Skip to main content
Log in

Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Alloying is one of the most effective means to confer superior properties to metal materials. For far too long, conventional W-based alloys were generally improved by the addition of minor elements. The exploitation of conventional W-based alloy is restricted to the corner of multielement phase diagrams with tiny compositional space. High-entropy alloys (HEAs) are a novel kind of alloys consisting of multi-principal alloying elements (usually more than 4) and have attracted increasing attention, since they were first reported in 2004. The emergence of HEAs filled the gap of the unexplored central region of multielement phase diagrams. Among them, tungsten-containing HEAs (TCHEAs) exhibit excellent mechanical properties, especially at extraordinarily elevated temperatures. Moreover, recent studies showed that TCHEAs had outstanding irradiation resistance properties. TCHEAs might serve as a promising candidate for plasma-facing materials in the fusion reactor. Many characteristics of TCHEAs are different from other HEAs due to the addition of tungsten with ultrahigh-melting temperature. Here, this paper aimed to introduce the manufacturing routes of TCHEAs; review the phase selection, mechanical properties, and irradiation resistance properties of TCHEAs; and propose the future prospects of TCHEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [59] Copyright 2018 Elsevier. b SEM micrographs of WTaMoNbV TCHEAs fabricated by SPS sintered at 1500 °C with prior MA process and XRD patterns of the 2-, 4-, and 6-h ball-milled WTaMoNbV TCHEAs powders. Reproduced with permission from Ref. [56] Copyright 2018 Elsevier

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced with permission from Ref. [62] Copyright 2015, Springer Nature

Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Waseem OA, Ryu HJ. Toughening of a low-activation tungsten alloy using tungsten short fibers and particles reinforcement for fusion plasma-facing applications. Nucl Fus. 2019;59(2):026007.

    Article  CAS  Google Scholar 

  2. Waseem OA, Ryu HJ. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci Rep. 2017;7(1):1926.

    Article  CAS  Google Scholar 

  3. El-Atwani O, Li N, Li M, Devaraj A, Baldwin JKS, Schneider MM, Sobieraj D, Wróbel JS, Nguyen-Manh D, Maloy SA, Martinez E. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv. 2019;5(3):eaav2002.

  4. Wang Q, Du G, Chen N, Jiang C, Chen L. Ideal strengths and thermodynamic properties of W and W-Re alloys from first-principles calculation. Fus Eng Des. 2020;155:111579.

    Article  CAS  Google Scholar 

  5. Li J, Wei Z, Zhou B, Wu Y, Chen SG, Sun Z. Preparation, microstructure, and microhardness of selective laser-melted W–3Ta sample. J Mater Res. 2020;35(15):2016.

    Article  CAS  Google Scholar 

  6. Chen CL, Sutrisna. Influence of alloying elements, in-situ dispersoids and fabrication on microstructure and properties of W-(Ta,V,Ti) ODS alloys. J Alloys Compd. 2020;834:154952.

  7. Wang ZL, Gao WJ, Liu YL, Li R, Meng FS, Song JP, Qi Y. A first principles investigation of W1-xMox (x = 0–68.75 at.%) alloys: Structural, electronic, mechanical and thermal properties. J Alloys Compd. 2020;829:154480.

  8. Yan J, Li X, Wang Z, Zhu K. Comparison of surface morphologies and helium retention of nanocrystalline W and W-Cr films prepared by magnetron sputtering. Nucl Mater Energy. 2020;22:100733.

    Article  Google Scholar 

  9. Zhang Y, Liu JP, Chen SY, Xie X, Liaw PK, Dahmen KA, Qiao JW, Wang YL. Serration and noise behaviors in materials. Prog Mater Sci. 2017;90:358.

    Article  CAS  Google Scholar 

  10. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213.

    Article  CAS  Google Scholar 

  11. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4(8):515.

    Article  CAS  Google Scholar 

  12. Zhu M, Yao L, Liu Y, Zhang M, Li K, Jian Z. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25 ≤ x ≤ 1.25) eutectic refractory high-entropy alloy. Mater Lett. 2020;272:127869.

  13. Zherebtsov S, Yurchenko N, Shaysultanov D, Tikhonovsky M, Salishchev G, Stepanov N. Microstructure and mechanical properties evolution in HfNbTaTiZr refractory high-entropy alloy during cold rolling. Adv Eng Mater. 2020;22(10):2000105.

    Article  CAS  Google Scholar 

  14. Yurchenko N, Panina E, Tikhonovsky M, Salishchev G, Zherebtsov S, Stepanov N. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite. Mater Lett. 2020;264:127372.

    Article  CAS  Google Scholar 

  15. Yang T, Guo W, Poplawsky JD, Li D, Wang L, Li Y, Hu W, Crespillo ML, Yan Z, Zhang Y, Wang Y, Zinkle SJ. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation. Acta Mater. 2020;188:1.

  16. Wang F, Yan X, Wang T, Wu Y, Shao L, Nastasi M, Lu Y, Cui B. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics. Acta Mater. 2020;195:739.

  17. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698.

    Article  CAS  Google Scholar 

  18. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758.

    Article  CAS  Google Scholar 

  19. Zhao S. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure. J Mater Sci Technol. 2020;44:133.

    Article  Google Scholar 

  20. Wang L, Wang L, Tang Y, Luo L, Luo L, Su Y, Guo J, Fu H. Microstructure and mechanical properties of CoCrFeNiW high entropy alloys reinforced by μ phase particles. J Alloy Compd. 2020;843:155997.

    Article  CAS  Google Scholar 

  21. Jiang H, Huang TD, Su C, Zhang HB, Han KM, Qin SX. Microstructure and mechanical behavior of CrFeNi2V0.5Wx (x = 0, 0.25) high-entropy alloys. Acta Metall Sinica (Engl Lett). 2020;33(8):1117.

  22. Ley NA, Segovia S, Gorsse S, Young ML. Characterization and modeling of NbNiTaTiW and NbNiTaTiW-Al refractory high-entropy alloys. Metall Mater Trans A. 2019;50(10):4867.

    Article  CAS  Google Scholar 

  23. Zhang W, Liaw P, Zhang Y. A novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys with excellent heat-softening resistance. Entropy. 2018;20(12):951.

  24. Jiang H, Zhang H, Huang T, Lu Y, Wang T, Li T. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater Des. 2016;109:539.

    Article  CAS  Google Scholar 

  25. Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, Li T. Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx high-entropy alloys. 2015;24(12):4594.

  26. Wang M, Ma Z, Xu Z, Cheng X. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys. J Alloy Compd. 2019;803:778.

    Article  CAS  Google Scholar 

  27. Zhang B, Gao MC, Zhang Y, Guo SM. Senary refractory high-entropy alloy CrMoNbTaVW. Calphad. 2015;51:193.

    Article  CAS  Google Scholar 

  28. Raman L, Karthick G, Guruvidyathri K, Fabijanic D, Narayana Murty SVS, Murty BS, Kottada RS. Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy. J Mater Res. 2020;35(12):1556.

    Article  CAS  Google Scholar 

  29. Wei Q, Shen Q, Zhang J, Chen B, Luo G, Zhang L. Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density. Int J Refract Metal Hard Mater. 2018;77:8.

    Article  CAS  Google Scholar 

  30. Zhang J, Hu Y, Wei Q, Xiao Y, Chen P, Luo G, Shen Q. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders. J Alloy Compd. 2020;827:154301.

    Article  CAS  Google Scholar 

  31. Yan D, Song K, Sun H, Wu S, Zhao K, Zhang H, Yuan S, Kim JT, Chawake N, Renk O, Hohenwarter A, Wang L, Eckert J. Microstructures, mechanical properties, and corrosion behaviors of refractory high-entropy ReTaWNbMo alloys. J Mater Eng Perform. 2020;29(1):399.

    Article  CAS  Google Scholar 

  32. Raturi A, Aditya CJ, Gurao NP, Biswas K. ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys. J Alloy Compd. 2019;806:587.

    Article  CAS  Google Scholar 

  33. Ikeuchi D, King DJM, Laws KJ, Knowles AJ, Aughterson RD, Lumpkin GR, Obbard EG. Cr-Mo-V-W: A new refractory and transition metal high-entropy alloy system. Scripta Mater. 2019;158:141.

    Article  CAS  Google Scholar 

  34. Han ZD, Luan HW, Liu X, Chen N, Li XY, Shao Y, Yao K. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater Sci Eng A. 2018;712:380.

    Article  CAS  Google Scholar 

  35. Yao HW, Qiao JW, Gao MC, Hawk JA, Ma SG, Zhou HF, Zhang Y. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater Sci Eng A. 2016;674:203.

    Article  CAS  Google Scholar 

  36. Han ZD, Chen N, Zhao SF, Fan LW, Yang GN, Shao Y, Yao K. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics. 2017;84:153.

    Article  CAS  Google Scholar 

  37. Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M, Sridharan K, Zhang C, Thoma D, Couet A. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Mater Des. 2020;187:108358.

    Article  CAS  Google Scholar 

  38. Guo Y, Liu Q. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding. Intermetallics. 2018;102:78.

    Article  CAS  Google Scholar 

  39. Li Q, Zhang H, Li D, Chen Z, Huang S, Lu Z, Yan H. WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition. Materials. 2019;12(3):533.

    Article  CAS  Google Scholar 

  40. Zhang M, Zhou X, Yu X, Li J. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol. 2017;311:321.

    Article  CAS  Google Scholar 

  41. Oleszak D, Antolak-Dudka A, Kulik T. High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Mater Lett. 2018;232:160.

    Article  CAS  Google Scholar 

  42. Sun X, Cheng X, Cai H, Ma S, Xu Z, Ali T. Microstructure, mechanical and physical properties of FeCoNiAlMnW high-entropy films deposited by magnetron sputtering. Appl Surf Sci. 2020;507:145131.

    Article  CAS  Google Scholar 

  43. Alvi S, Jarzabek DM, Kohan MG, Hedman D, Jenczyk P, Natile MM, Vomiero A, Akhtar M. Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering. ACS Appl Mater Interfaces. 2020;12(18):21070.

    Article  CAS  Google Scholar 

  44. Yan J, Li M, Li K, Qiu J, Guo Y. Effects of Cr content on microstructure and mechanical properties of WMoNbTiCr high-entropy alloys. J Mater Eng Perform. 2020;29(4):2125.

    Article  CAS  Google Scholar 

  45. Ganji RS, Rajulapati KV, Rao KBS. Development of a multi-phase AlCuTaVW high-entropy alloy using powder metallurgy route and its mechanical properties. Trans Indian Inst Met. 2020;73(3):613.

    Article  CAS  Google Scholar 

  46. Ditenberg IA, Smirnov IV, Korchagin MA, Grinyaev KV, Melnikov VV, Pinzhin YP, Gavrilov AI, Esikov MA, Mali VI, Dudina DV. Structure and phase composition of a W-Ta-Mo-Nb-V-Cr-Zr-Ti alloy obtained by ball milling and spark plasma sintering. Entropy. 2020;22(2):143.

    Article  CAS  Google Scholar 

  47. Long Y, Liang X, Su K, Peng H, Li X. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: microstructural evolution and mechanical properties. J Alloy Compd. 2019;780:607.

    Article  CAS  Google Scholar 

  48. Alvi S, Akhtar F. High temperature tribology of CuMoTaWV high entropy alloy. Wear. 2019;426–427:412.

    Article  CAS  Google Scholar 

  49. Makhmutov T, Razumov N, Kim A, Ozerskoy N, Mazeeva A, Popovich A. Synthesis of CoCrFeNiMnW0.25 high-entropy alloy powders by mechanical alloying and plasma spheroidization processes for additive manufacturing. Metals Mater Int. 2021;27:50.

  50. Xin SW, Zhang M, Yang TT, Zhao YY, Sun BR, Shen TD. Ultrahard bulk nanocrystalline VNbMoTaW high-entropy alloy. J Alloy Compd. 2018;769:597.

    Article  CAS  Google Scholar 

  51. Lo KC, Murakami H, Yeh JW, Yeh AC. Oxidation behaviour of a novel refractory high entropy alloy at elevated temperatures. Intermetallics. 2020;119:106711.

    Article  CAS  Google Scholar 

  52. Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high entropy alloys—a review. J Mater Res. 2018;33(19):3092.

    Article  CAS  Google Scholar 

  53. Lu Y, Gao X, Jiang L, Chen Z, Wang T, Jie J, Kang H, Zhang Y, Guo S, Ruan H, Zhao Y, Cao Z, Li T. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143.

    Article  CAS  Google Scholar 

  54. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200.

    Article  CAS  Google Scholar 

  55. Park M, Schuh CA. Accelerated sintering in phase-separating nanostructured alloys. Nat Commun. 2015;6:6858.

    Article  CAS  Google Scholar 

  56. Kang B, Lee J, Ryu HJ, Hong SH. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater Sci Eng A. 2018;712:616.

    Article  CAS  Google Scholar 

  57. Tong Y, Qi P, Liang X, Chen Y, Hu Y, Hu Z. Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying. Materials. 2018;11(7):1250.

    Article  CAS  Google Scholar 

  58. Zhang T, Deng HW, Xie ZM, Liu R, Yang JF, Liu CS, Wang XP, Fang QF, Xiong Y. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces. J Mater Sci Technol. 2020;52:29.

    Article  Google Scholar 

  59. Waseem OA, Lee J, Lee HM, Ryu HJ. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater Chem Phys. 2018;210:87.

    Article  CAS  Google Scholar 

  60. Han J, Su B, Lu J, Meng J, Zhang A, Wu Y. Preparation of MoNbTaW refractory high entropy alloy powders by pressureless spark plasma sintering: crystal structure and phase evolution. Intermetallics. 2020;123:106832.

    Article  CAS  Google Scholar 

  61. Wang H, Liu Q, Guo Y, Lan H. MoFe1.5CrTiWAlNbx refractory high-entropy alloy coating fabricated by laser cladding. Intermetallics. 2019;115:106613.

  62. Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat Commun. 2015;6(1):7748.

    Article  Google Scholar 

  63. Zou Y, Maiti S, Steurer W, Spolenak R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014;65:85.

    Article  CAS  Google Scholar 

  64. Feng X, Tang G, Sun M, Ma X, Wang L. Chemical state and phase structure of (TaNbTiW)N films prepared by combined magnetron sputtering and PBII. Appl Surf Sci. 2013;280:388.

    Article  CAS  Google Scholar 

  65. Melia MA, Whetten SR, Puckett R, Jones M, Heiden MJ, Argibay N, Kustas AB. High-throughput additive manufacturing and characterization of refractory high entropy alloys. Appl Mater Today. 2020;19:100560.

    Article  Google Scholar 

  66. Zhao S, Zhang Y, Weber WJ. High entropy alloys: irradiation. Ref Mod Mater Sci Mater Eng. 2020. https://doi.org/10.1016/B978-0-12-803581-8.11713-8.

    Article  Google Scholar 

  67. Nutor RK, Cao QP, Wang XD, Zhang DX, Fang YZ, Zhang Y, Jiang JZ. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys. Adv Eng Mater. 2020;22(11):2000466.

    Article  CAS  Google Scholar 

  68. Kube SA, Schroers J. Metastability in high entropy alloys. Scripta Mater. 2020;186:392.

    Article  CAS  Google Scholar 

  69. Li JH, Tsai MH. Theories for predicting simple solid solution high-entropy alloys: classification, accuracy, and important factors impacting accuracy. Scripta Mater. 2020;188:80.

    Article  CAS  Google Scholar 

  70. Senkov ON, Miracle DB. A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J Alloy Compd. 2016;658:603.

    Article  CAS  Google Scholar 

  71. Ye YF, Wang Q, Lu J, Liu CT, Yang Y. Design of high entropy alloys: a single-parameter thermodynamic rule. Scripta Mater. 2015;104:53.

    Article  CAS  Google Scholar 

  72. Wang Z, Huang Y, Yang Y, Wang J, Liu CT. Atomic-size effect and solid solubility of multicomponent alloys. Scripta Mater. 2015;94:28.

    Article  CAS  Google Scholar 

  73. Troparevsky MC, Morris JR, Kent PRC, Lupini AR, Stocks GM. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X. 2015;5(1):11041.

    Google Scholar 

  74. Yang S, Lu J, Xing F, Zhang L, Zhong Y. Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design-A case study with Al-Co-Cr-Fe-Ni system. Acta Mater. 2020;192:11.

    Article  CAS  Google Scholar 

  75. Yin S, Ding J, Asta M, Ritchie RO. Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys. NPJ Comput Mater. 2020;6(1):110.

  76. Zhang Y, Wen C, Wang C, Antonov S, Xue D, Bai Y, Su Y. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 2020;185:528.

    Article  CAS  Google Scholar 

  77. Singh AK, Kumar N, Dwivedi A, Subramaniam A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics. 2014;53:112.

    Article  CAS  Google Scholar 

  78. Guo S, Hu Q, Ng C, Liu CT. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics. 2013;41:96.

    Article  CAS  Google Scholar 

  79. Song H, Tian F, Hu QM, Vitos L, Wang Y, Shen J, Chen N. Local lattice distortion in high-entropy alloys. Phys Rev Mater. 2017;1(2):23404.

    Article  Google Scholar 

  80. Lee C, Song G, Gao MC, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky JD, Li S, Samaei AT, Chen W, Hu A, Chen W, Hu A, Choo H, Liaw PK. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 2018;160:158.

    Article  CAS  Google Scholar 

  81. Ye YF, Zhang YH, He QF, Zhuang Y, Wang S, Shi SQ, Hu A, Fan J, Yang Y. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 2018;150:182.

    Article  CAS  Google Scholar 

  82. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2–3):233.

    Article  CAS  Google Scholar 

  83. King DJM, Middleburgh SC, McGregor AG, Cortie MB. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 2016;104:172.

    Article  CAS  Google Scholar 

  84. Tong Y, Zhao S, Bei H, Egami T, Zhang Y, Zhang F. Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys. Acta Mater. 2020;183:172.

    Article  CAS  Google Scholar 

  85. Ishibashi S, Ikeda Y, Koermann F, Grabowski B, Neugebauer J. Correlation analysis of strongly fluctuating atomic volumes, charges, and stresses in body-centered cubic refractory high-entropy alloys. Phys Rev Mater. 2020;4(2):23608.

    Article  CAS  Google Scholar 

  86. Shimada M, Costley AE, Federici G, Ioki K, Kukushkin AS, Mukhovatov V, Polevoi A, Sugihara M. Overview of goals and performance of ITER and strategy for plasma–wall interaction investigation. J Nucl Mater. 2005;337–339:808.

    Article  CAS  Google Scholar 

  87. Sadeghilaridjani M, Muskeri S, Pole M, Mukherjee S. High-temperature nano-indentation creep of reduced activity high entropy alloys based on 4-5-6 elemental palette. Entropy. 2020;22(2):230.

    Article  CAS  Google Scholar 

  88. Jiang MG, Chen ZW, Tong JD, Liu CY, Xu G, Liao HB, Liao P, Wang XY, Wang M, Xu M, Lao CS. Strong and ductile reduced activation ferritic/martensitic steel additively manufactured by selective laser melting. Mater Res Lett. 2019;7(10):426.

    Article  CAS  Google Scholar 

  89. Qiu G, Zhan D, Li C, Yang Y, Qi M, Jiang Z, Zhang H. Effects of yttrium and heat treatment on the microstructure and mechanical properties of CLAM steel. J Mater Eng Perform. 2020;29(1):42.

    Article  CAS  Google Scholar 

  90. Fan Z, Jóni B, Ribárik G, Ódor É, Fogarassy Z, Ungár T. The Microstructure and strength of a V–5Cr–5Ti alloy processed by high pressure torsion. Mater Sci Eng A. 2019;758:139.

    Article  CAS  Google Scholar 

  91. Ding J, Yang S, Liu G, Li Q, Zhu B, Zhang M, Zhou L, Shang C, Zhan Q, Wan F. Recrystallization nucleation in V-4Cr-4Ti alloy. J Alloy Compd. 2019;777:663.

    Article  CAS  Google Scholar 

  92. Sadeghilaridjani M, Ayyagari A, Muskeri S, Hasannaeimi V, Salloom R, Chen WY, Mukherjee S. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy. J Nucl Mater. 2020;529:151955.

    Article  CAS  Google Scholar 

  93. Zhao S, Osetsky Y, Zhang Y. Preferential diffusion in concentrated solid solution alloys: NiFe NiCo and NiCoCr. Acta Mater. 2017;128:391.

    Article  CAS  Google Scholar 

  94. Wang X, Barr CM, Jin K, Bei H, Hattar K, Weber WJ, Zhang Y, More KL. Defect evolution in Ni and NiCoCr by in situ 2.8 MeV Au irradiation. J Nucl Mater. 2019;523:502.

  95. Guan H, Huang S, Ding J, Tian F, Xu Q, Zhao J. Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 2020;187:122.

    Article  CAS  Google Scholar 

  96. Tong Y, Velisa G, Zhao S, Guo W, Yang T, Jin K, Lu C, Bei H, Ko JYP, Pagan DC, Zhang Y, Wang L, Zhang FX. Evolution of local lattice distortion under irradiation in medium- and high-entropy alloys. Materialia. 2018;2:73.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National MCF Energy Research and Development Program (Grant No. 2018YFE0312400), National Natural Science Foundation of China (Grant Nos. 51822402 and 51671044), National Key Research and Development Program of China (Grant Nos. 2019YFA0209901 and 2018YFA0702901), Liao Ning Revitalization Talents Program (Grant No. XLYC1807047), Fund of Science and Technology on Reactor Fuel and Materials Laboratory (Grant No. 6142A06190304), and Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University (Grant No. SKLSP201902)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to En-Yu Guo or Yi-Ping Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TX., Miao, JW., Guo, EY. et al. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties. Tungsten 3, 181–196 (2021). https://doi.org/10.1007/s42864-021-00081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00081-x

Keywords

Navigation