Skip to main content

Advertisement

Log in

Development of a Multi-phase AlCuTaVW High-Entropy Alloy Using Powder Metallurgy Route and its Mechanical Properties

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Equiatomic AlCuTaVW high-entropy alloy (HEA) composition have resulted in a single-phase solid solution with a bcc crystal structure after 25 h of ball milling. Two fcc phases and an ordered B2 phase have evolved during spark plasma sintering at 1523 K. The morphology of sintered disc contains a continuous bright phase and a discontinuous dark phase. The dark phase is detected to be Al-rich. Microhardness of the sintered product is 13 ± 1 GPa, and it is very high compared to other HEAs, conventional ceramics and cermets. A fracture toughness of 8.36 MPa m1/2 is measured from the cracks generated along the edges of Vickers indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones D R H, and Ashby M F, Engineering Materials 1: An Introduction to Properties, Applications and Design. 4th Ed., Butterworth-Heinemann, Amsterdam (2009).

    Google Scholar 

  2. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsua C H, and Chang S Y, Adv Eng Mater6 (2004) 299.

    Article  CAS  Google Scholar 

  3. Murty B S, Yeh J W, and Ranganathan S, High-Entropy Alloys, Butterworth-Heinemann, Boston (2014).

    Google Scholar 

  4. Miracle D B, and Senkov O N, Acta Mater122 (2017) 488.

    Article  Google Scholar 

  5. Gao M C, Yeh J W, Liaw P K, and Zhang Y, High-Entropy Alloys Fundamentals and Applications, Springer International, Switzerland (2016).

    Book  Google Scholar 

  6. Ganji R S, Sai Karthik P, Bhanu Sankara Rao K, and Rajulapati K V, Acta Mater125 (2017) 58.

    Article  CAS  Google Scholar 

  7. Li Z, Tasan C C, Springer H, Gault B, and Raabe D, Sci Rep7 (2017) 40704.

    Article  CAS  Google Scholar 

  8. Hsu W -L, Yang Y -C, Chen C -Y, and Yeh J -W, Intermetallics89 (2017) 105.

    Article  CAS  Google Scholar 

  9. Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, and Ritchie R O, Science345 (2014) 1153.

    Article  CAS  Google Scholar 

  10. Mallik M, Pan S, and Roy H, Int J Curr Eng Tech3 (2013) 1647.

    Google Scholar 

  11. Seifi M, Li D, Yong Z, Liaw P K, and Lewandowski J J, Jom67 (2015) 2288.

    Article  CAS  Google Scholar 

  12. Zhang H, He Y, and Pan Y, Scr Mater69 (2013) 342.

    Article  CAS  Google Scholar 

  13. Gludovatz B, George E P, and Ritchie R O, Jom67 (2015) 2262.

    Article  CAS  Google Scholar 

  14. Senkov O N, Wilks G B, Miracle D B, Chuang C P, and Liaw P K, Intermetallics18 (2010) 1758.

    Article  CAS  Google Scholar 

  15. Senkov O N, and Woodward C F, Mater Sci Eng A529 (2011) 311.

    Article  CAS  Google Scholar 

  16. Senkov O, Isheim D, Seidman D, and Pilchak A, Entropy18 (2016) 102.

    Article  Google Scholar 

  17. Couzinié J P, Dirras G, Perrière L, Chauveau T, Leroy E, Champion Y, and Guillot I, Mater Lett126 (2014) 285.

    Article  Google Scholar 

  18. Zhang A, Han J, Su B, Li P, and Meng J, Mater Des114 (2017) 253.

    Article  CAS  Google Scholar 

  19. Strecker K, Ribeiroa S, and Hoffmannb M -J, Mater Res8 (2005) 121.

    Article  CAS  Google Scholar 

  20. Bouteghmes D, Hamidouche M, and Bouaouadja N, Int Rev Mech Eng6 (2012) 803.

    Google Scholar 

  21. Shetty D K, Wright I G, Mincer P N, and Clauer A H, J Mater Sci20 (1985) 1873.

    Article  CAS  Google Scholar 

  22. Spiegler R, Schmauder S, and Sigl L S, J Hard Mater1 (1990) 147.

    CAS  Google Scholar 

  23. Medeiros E E, and Dias A M S, Int J Recent Res Appl Stud17 (2013) 9.

    Google Scholar 

  24. Lenka K, Duszová A, Kašiarová M, Dorčáková F, Dusza J, and Balázsi C, Acta Metall Slovaca3 (2013) 213.

    Google Scholar 

  25. Sedlák R, Kovalčíková A, Tatarková M, Rutkowski P, and Dusza J, Defect Diffus Forum368 (2016) 166.

    Google Scholar 

  26. Abbas S Z, Khalid F A, and Zaigham H, J Non-Cryst Solids457 (2017) 86.

    Google Scholar 

  27. Gilbert C J, Ritchie R O, and Johnson W L, Appl Phys Lett71 (1997) 476.

    Article  CAS  Google Scholar 

  28. Madge S V, Metals5 (2015) 1279.

    Article  CAS  Google Scholar 

  29. Ćorić D, Ćurković L, Renjo M M, and Famena T, Transactions of Femena XLI-2 (2017) 1.

  30. Andrejovská J, Mihalik J, Kovaľ V, Bruncková H, and Dusza J, Acta Metall Slovaca15 (2009) 112.

    Google Scholar 

  31. Min K S, Ardell A J, Eck S J, and Chen F C, J Mater Sci30 (1995) 5479.

    Article  CAS  Google Scholar 

  32. Balog M, Hric L, Křesťan J, Bača L, and Šajgalík P, Powder Metall Prog6 (2006) 137.

    CAS  Google Scholar 

  33. Pramanick A K, Int J Res Eng Tech4 (2015) 334.

    Article  Google Scholar 

  34. Ballóková B, and Besterci M, Powder Metall Prog8 (2008) 270.

    Google Scholar 

  35. Rios C T, Contieri R J, Souza S A, Cremasco A, Hayama A O F, and Caram R, Mater Des33 (2012) 563.

    Article  CAS  Google Scholar 

  36. Anstis G R, Chantikul P, Lawn B R, and Marshall D B, J Am Ceram Soc64 (1981) 533.

    Article  CAS  Google Scholar 

  37. Quinn G D, and Bradt R C, J Am Ceram Soc90 (2007) 673.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DST-PURSE and DST-FIST programs of School of Engineering Sciences and Technology, University of Hyderabad are gratefully acknowledged for supporting this research work. The authors are thankful to Mr. PVV Srinivas of the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India, for assisting with spark plasma sintering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koteswararao V. Rajulapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganji, R.S., Rajulapati, K.V. & Rao, K.B.S. Development of a Multi-phase AlCuTaVW High-Entropy Alloy Using Powder Metallurgy Route and its Mechanical Properties. Trans Indian Inst Met 73, 613–618 (2020). https://doi.org/10.1007/s12666-020-01875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01875-2

Keywords

Navigation