Skip to main content
Log in

STACKING DISORDER AND REACTIVITY OF KAOLINITES

  • Published:
Clays and Clay Minerals

Abstract

Kaolinite is a clay mineral with diverse environmental, industrial, and agricultural applications. The influence of the crystallographic properties of kaolinite, e.g. structural disorder, on these applications is of great interest. Qualitative and quantitative analyses of kaolinite structural disordering over the last 70 years have revealed three main sources of layer-stacking disordering: (1) enantiomorphic stacking; (2) dickite-like stacking; and (3) random shift of layers. What influence do these stacking disorders have on the reactivity of kaolinite? The objective of the present study was to investigate the influence of stacking disorder on the intercalation and dissolution of kaolinite layers. To minimize the effect of particle size on reactivity, the 1–2 μm fractions of five geologic kaolinites were used. The 1–2 μm fractions varied in the degree of structural disorder. The kaolinites were: (1) intercalated with saturated CH3COOK solution at room temperature to examine the effect of stacking disorder on intercalation; and (2) dissolved in 4 M NaOH at 80°C to examine the effect of stacking disorder on kaolinite stability in alkaline solution. Samples with a low degree of stacking disorder intercalated twice as much and dissolved >1.5 times as much as the most disordered sample. The infrared spectrum of the undissolved kaolinite residue in 4 M NaOH showed relative intensities of OH-stretching bands characteristic of a kaolinite-dickite mixture. The binding strength (i.e. resistance to intercalation) of the undissolved residue by NaOH was high; the residue could not be intercalated by CH3COOK. Differences in the average interlayer binding strength were attributed to the greater proportions of dickite-like sequences in highly disordered kaolinite compared to ordered kaolinite specimens. These results suggested that the binding strength of kaolinite layers is proportional to the degree of stacking disorder. Dickite-like sequences, a type of stacking defect, contributed to the lower reactivity of highly disordered kaolinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  • Beauvais, A., & Bertaux, J. (2002). In situ characterization and differentiation of kaolinites in lateritic weathering profiles using infrared microspectroscopy. Clays and Clay Minerals, 50, 314–330.

    Article  Google Scholar 

  • Bellotto, M., Gualtieri, A., Artioli, G., & Clark, S. M. (1995). Kinetic study of the kaolinite-mullite reaction sequence. Part I: Kaolinite dehydroxylation. Physics and Chemistry of Minerals, 22, 207–217.

    Article  Google Scholar 

  • Bish, D. L., & Von Dreele, R. B. (1989). Rietveld Refinement of Non-Hydrogen Atomic Positions in Kaolinite. Clays and Clay Minerals, 37(4), 289–296.

    Article  Google Scholar 

  • Bookin, A. S., Drits, V. A., Plançon, A., & Tchoubar, C. (1989). Stacking faults in kaolin-group minerals in the light of real structural features. Clays and Clay Minerals, 37, 297–307.

    Article  Google Scholar 

  • Brindley, G.W. (1980). Order-disorder in clay minerals. Pp. 125–196 in: Crystal Structure of Clay Minerals and Their X-Ray Identification (G.W. Brindley and G. Brown, editors). Mineralogical Society, London

  • Cheng, H., Liu, Q., Yang, J., Du, X., & Frost, R. L. (2010). Influencing factors on kaolinite–potassium acetate intercalation complexes. Applied Clay Science, 50, 476–480.

    Article  Google Scholar 

  • Cruz-Cumplido, M., Sow, C., & Fripiat, J. J. (1982). Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins. Bulletin de Minéralogie, 105, 493–498.

    Article  Google Scholar 

  • Cuadros, J., Vega, R., & Toscano, A. (2015). Mid-infrared features of kaolinite-dickite. Clays and Clay Minerals, 63, 73–84.

    Article  Google Scholar 

  • De Ligny, D., & Navrotsky, A. (1999). Energetics of kaolin polymorphs. American Mineralogist, 84, 506–516.

    Article  Google Scholar 

  • Deng, Y., White, G. N., & Dixon, J. B. (2002). Effect of structural stress on the intercalation rate of kaolinite. Journal of Colloid and Interface Science, 250, 379–393.

    Article  Google Scholar 

  • Devidal, J. L., Dandurand, J. L., & Gout, R. (1996). Gibbs free energy of formation of kaolinite from solubility measurement in basic solution between 60 and 170°C. Geochimica et Cosmochimica Acta, 60, 553–564.

    Article  Google Scholar 

  • Drits, V.A. & Tchoubar, C. (1990). The modelization method in the determination of the structural characteristics of some layer silicates: Internal structure of the layers, nature and distribution of the stacking faults. Pp. 233–303 in: X-Ray Diffraction by Disordered Lamellar Structures (V.A. Drits and C. Tchoubar, editors). Springer, Berlin, Heidelberg.

  • Farmer, V. C. (1974). The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland.

  • Fialips, C. I., Majzlan, J., Beaufort, D., & Navrotsky, A. (2003). New thermochemical evidence on the stability of dickite vs. kaolinite. American Mineralogist, 88, 837–845.

    Article  Google Scholar 

  • Fialips, C. I., Navrotsky, A., & Petit, S. (2001). Crystal properties and energetics of synthetic kaolinite. American Mineralogist, 86, 304–311.

    Article  Google Scholar 

  • Franco, F., Pérez-Maqueda, L. A., & Pérez-Rodríguez, J. L. (2003). The influence of ultrasound on the thermal behaviour of a well ordered kaolinite. Thermochimica Acta, 404, 71–79.

    Article  Google Scholar 

  • Fraser, A. R., Wilson, M. J., Roe, M. J., & Shen, Z. Y. (2002). Use of hydrofluoric acid dissolution for the concentration of dickite and nacrite from kaolin deposits: an FTIR study. Clay Minerals, 37, 559–570.

    Article  Google Scholar 

  • Frost, R. L., Kristof, J., Horvath, E., & Kloprogge, J. T. (1999). Modification of kaolinite surfaces through intercalation with potassium acetate, II. Journal of Colloid and Interface Science, 214, 109–117.

    Article  Google Scholar 

  • Frost, R. L., Van Der Gaast, S. J., Zbik, M., Kloprogge, J. T., & Paroz, G. N. (2002). Birdwood kaolinite: a highly ordered kaolinite that is difficult to intercalate—an XRD, SEM and Raman spectroscopic study. Applied Clay Science, 20, 177–187.

    Article  Google Scholar 

  • Frost, R. L., & Vassallo, A. M. (1996). The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays and Clay Minerals, 44, 635–651.

    Article  Google Scholar 

  • Gaite, J. M., Ermakoff, P., Allard, T., & Muller, J. P. (1997). Paramagnetic Fe3+: A sensitive probe for disorder in kaolinite. Clays and Clay Minerals, 45, 496–505.

    Article  Google Scholar 

  • Galán, E., Aparicio, P., La Iglesia, Á., & Gonzalez, I. (2006). The effect of pressure on order/disorder in kaolinite under wet and dry conditions. Clays and Clay Minerals, 54, 230–239.

    Article  Google Scholar 

  • Giese, R. F. (1973). Interlayer bonding in kaolinite, dickite and nacrite. Clays and Clay Minerals, 21, 145–149.

    Article  Google Scholar 

  • Giese, R. F. (1982). Theoretical-studies of the kaolin minerals-electrostatic calculations. Bulletin de Minéralogie, 105, 417–424.

    Article  Google Scholar 

  • Giese, R.F. (1988). Kaolin Minerals: Structures and Stabilities. Pp. 29–66 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Chantilly, Virginia, USA.

  • Hinckley, D. N. (1962). Variability and “crystallinity” values among the koalin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229–235.

    Article  Google Scholar 

  • Horváth, I. (1985). Kinetics and compensation effect in kaolinite dehydroxylation. Thermochimica Acta, 85, 193–198.

    Article  Google Scholar 

  • Iriarte, I., Petit, S., Huertas, F. J., Fiore, S., Grauby, O., Decarreau, A., & Linares, J. (2005). Synthesis of kaolinite with a high level of Fe3+ for A1 substitution. Clays and Clay Minerals, 53, 1–10.

    Article  Google Scholar 

  • Johnston, C. T., Elzea-Kogel, J., Bish, D. L., Kogure, T., & Murray, H. H. (2008). Low-temperature FTIR Study of Kaolin-Group Minerals. Clays and Clay Minerals, 56, 470–485.

    Article  Google Scholar 

  • Kiseleva, I. A., Orogodova, L. P., Krupskaya, V. V., Melchakova, L. V., Vigasina, M. F., & Luse, I. (2011). Thermodynamics of the kaolinite-group minerals. Geochemistry International, 49, 793–801.

    Article  Google Scholar 

  • Kittrick, J. A. (1966). Free energy of formation of kaolinite from solubility measurements. American Mineralogist, 51, 1457–1466.

    Google Scholar 

  • Kogure, T. (2011). Stacking disorder in kaolinite revealed by HRTEM: A review. Clay Science, 15, 3–11.

    Google Scholar 

  • Kogure, T., Elzea-Kogel, J., Johnston, C. T., & Bish, D. L. (2010). Stacking disorder in a sedimentary kaolinite. Clays and Clay Minerals, 58, 62–71.

    Article  Google Scholar 

  • Kogure, T., & Inoue, A. (2005a). Determination of defect structures in kaolin minerals by high-resolution transmission electron microscopy (HRTEM). American Mineralogist, 90, 85–89.

    Article  Google Scholar 

  • Kogure, T., & Inoue, A. (2005b). Stacking defects and long-period polytypes in kaolin minerals from a hydrothermal deposit. European Journal of Mineralogy, 17, 465–474.

    Article  Google Scholar 

  • Kristof, E., Juhasz, A. Z., & Vassanyi, I. (1993). The effect of mechanical treatment on the crystal structure and thermal behavior of kaolinite. Clays and Clay Minerals, 41, 608–612.

    Article  Google Scholar 

  • Li, J., Zeng, X., Yang, X., Wang, C., & Luo, X. (2015). Synthesis of pure sodalite with wool ball morphology from alkali fusion kaolin. Materials Letters, 161, 157–159.

    Article  Google Scholar 

  • Liétard, O. (1977). Contribution a l’etude des proprietes physicochimiques, cristallographiques et morphologiques des kaolins [thesis]. University of Nancy.

  • Lombardi, G., Russell, J. D., & Keller, W. D. (1987). Compositional and structural variations in the size fractions of a sedimentary and a hydrothermal kaolin. Clays and Clay Minerals, 35, 321–335.

    Article  Google Scholar 

  • Mahdavi, F., Abdul, R. S., & Khanif, Y. M. (2014). Intercalation of urea into kaolinite for preparation of controlled release fertilizer. Chemical Industry and Chemical Engineering Quarterly, 20, 207–213.

    Article  Google Scholar 

  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.

    Article  Google Scholar 

  • Panagiotopoulou, C., Kontori, E., Perraki, T., & Kakali, G. (2007). Dissolution of aluminosilicate minerals and by-products in alkaline media. Journal of Materials Science, 42, 2967–2973.

    Article  Google Scholar 

  • Plançon, A., Giese Jr., R. F., Snyder, R., Drits, V. A., & Bookin, A. S. (1989). Stacking faults in the kaolin-group minerals: Defect structures of kaolinite. Clays and Clay Minerals, 37, 203–210.

    Article  Google Scholar 

  • Prost, R., Dameme, A., Huard, E., Driard, J., & Leydecker, J. P. (1989). Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K. Clays and Clay Minerals, 37, 464–468.

    Article  Google Scholar 

  • Raussell-Colom, J.A. & Serratosa, J.M. (1987). Chemistry of clays and clay minerals. Pp. 371–422 in: Chemistry of Clays and Clay Minerals (A.C. Newman, editor). Monograph 6, Mineralogical Society of Great Britain & Ireland, London.

  • Reyes, C. A. R., Williams, C., & Alarcón, O. M. C. (2013). Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions. Materials Research, 16, 424–438.

    Article  Google Scholar 

  • Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 22, 151–152.

    Article  Google Scholar 

  • Sakharov, B. A., Drits, V. A., McCarty, D. K., & Walker, G. M. (2016). Modeling powder X-ray diffraction patterns of The Clay Minerals Society kaolinite standards: KGa-1, KGa-1b, and KGa-2. Clays and Clay Minerals, 64, 314–333.

    Article  Google Scholar 

  • Sari, M. E. F., Suprapto, S., & Prasetyoko, D. (2018). Direct synthesis of sodalite from kaolin: the influence of alkalinity. Indonesian Journal of Chemistry, 18, 607.

    Article  Google Scholar 

  • Sato, H., Ono, K., Johnston, C. T., & Yamagishi, A. (2004). First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates. American Mineralogist, 89, 1581–1585.

    Article  Google Scholar 

  • Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of Röntgen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2, 96–100.

    Google Scholar 

  • Soukup, D.A., Buck, B.J., & Harris, W. (2008). Preparing soils for mineralogical analyses. Pp. 13–31 in: Methods of Soil Analysis Part 5—Mineralogical Methods. SSSA Book Series SV - 5.5, Soil Science Society of America, Madison, WI, USA.

  • Stoch, L., & Wacławska, I. (1981). Dehydroxylation of kaolinite group minerals - I. Kinetics of dehydroxylation of kaolinite and halloysite. Journal of Thermal Analysis, 20, 291–304.

    Article  Google Scholar 

  • Sugahara, Y., Nagayama, T., Kuroda, K., Dio, A., & Kata, C. (1991). Preparation of a kaolinite-acrylic acid intercalation compound and the heat-treated products. Clay Science, 8, 69–77.

    Google Scholar 

  • Sutheimer, S. H., Maurice, P. A., & Zhou, Q. (1999). Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics. American Mineralogist, 84, 620–628.

    Article  Google Scholar 

  • Theng, B.K.G. (editor) (1974). The Chemistry of Clay–Organic Reactions. Wiley and Sons, New York, London 343 pp.

  • Uwins, P.J.R., Mackinnon, I.D.R., & Thompson, J.G. (1991). “Crystallinity” and intercalation relationships in size fractionated Australian kaolinites. P. 154 in: Clay Minerals Society 28th Annual Meeting.

  • Uwins, P. J. R., Mackinnon, I. D. R., Thompson, J. G., & Yago, A. J. E. (1993). Kaolinite-NMF intercalates. Clays and Clay Minerals, 41, 707–717.

    Article  Google Scholar 

  • Vaculikova, L., Plevova, E., Vallova, S., & Koutnik, I. (2011). Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodynamica et Geromaterialia, 8, 59–68.

    Google Scholar 

  • Veblen, D. R. (1985). Direct TEM imaging of complex structures and defects in silicates. Annual Review Earth and Planetary Sciences, 13, 119–146.

    Article  Google Scholar 

  • Weiss, A., Becker, H.O., Orth, H., Mai, G., Lechner, H., & Range, K.J. (1969). Particle size effects and reaction mechanism of the intercalation into kaolinite. Pp. 180–184 in: Proceedings of the International Clay Conference, Tokyo.

  • White, C. E., Kearley, G. J., Provis, J. L., & Riley, D. P. (2013). Structure of kaolinite and influence of stacking faults: Reconciling theory and experiment using inelastic neutron scattering analysis. Journal of Chemical Physics, 138, 194501.

    Article  Google Scholar 

  • White, N.G. & Dixon, J.B. (2002). Kaolin-serpentine minerals. Pp. 389–414 in: Soil Mineralogy with Environmental Applications (J.B. Dixon and D.G. Schulze, editors). Soil Science Society of America, Madison, WI, USA.

  • Wiewióra, A. & Brindley, G.W. (1969). Potassium acetate intercalation in kaolinite and its removal; effect of material characteristics. Pp. 723–733 in: Proceedings of the International Clay Conference 1969, Tokyo.

  • Xu, B., Smith, P., Wingate, C., & De Silva, L. (2010). The effect of calcium and temperature on the transformation of sodalite to cancrinite in Bayer digestion. Hydrometallurgy, 105, 75–81.

    Article  Google Scholar 

  • Zhang, X. R., & Xu, Z. (2007). The effect of microwave on preparation of kaolinite/dimethylsulfoxide composite during intercalation process. Materials Letters, 61, 1478–1482.

    Article  Google Scholar 

  • Zhao, H., Deng, Y., Harsh, J. B., Flury, M., & Boyle, J. S. (2004). Alteration of kaolinite to cancrinite and sodalite by simulated hanford tank waste and its impact on cesium retention. Clays and Clay Minerals, 52, 1–13.

    Article  Google Scholar 

  • Zotov, A., Mukhamet-Galeev, A., & Schott, J. (1998). An experimental study of kaolinite and dickite relative stability at 150–300°C and the thermodynamic properties of dickite. American Mineralogist, 83, 516–524.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Norman Borlaug Institute, Texas A&M University, for the fellowship that sponsored the first author’s graduate study, and the NSF grant DBI0116835 which supported the acquisition of the FE-SEM.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjun Deng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashina, B., Deng, Y. STACKING DISORDER AND REACTIVITY OF KAOLINITES. Clays Clay Miner. 69, 354–365 (2021). https://doi.org/10.1007/s42860-021-00132-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00132-x

Keywords

Navigation