Skip to main content
Log in

A high sensitivity strategy of nitrite detection based on CoFe@NC nanocubes modified glassy carbon electrode

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In the present study, an innovative electrochemical sensing platform was established for sensitive detection of NO2. This sensor was developed using CoFe alloy encapsulated in nitrogen-doped carbon nanocubes (named as CoFe@NC-NCS), synthesized through the calcination of polydopamine-coated CoFe Prussian-blue analogues (CoFe-PBA@PDA). The morphological and electrochemical characterization reveals that the CoFe@NC-NCS possesses high electrocatalytic activity for electrochemical quantitation of NO2, ascribed to the huge surface area and plentiful active positions, benefiting from the porous, hollow, and core–shell structure of CoFe@NC-NCS. Under the optimal conditions, CoFe@NC-NCS/GCE possessed remarkable sensing performance for NO2 with wide liner ranges and a detection limit of 0.015 μM. NO2 recovery experiments in real samples exhibited recoveries in the range of 98.8–103.5%. Hence, the CoFe@NC-NCS shows great promise for the construction of electrochemical sensor with more potential application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Zhang N, Yang J, Hu C (2022) Laser-scribed graphene sensors on nail polish with tunable composition for electrochemical detection of nitrite and glucose. Sens Actuators 357:131394. https://doi.org/10.1016/j.snb.2022.131394

    Article  CAS  Google Scholar 

  2. Wong A, Santos AM, Cardenas-Riojas AA, Baena-Moncada AM, Sotomayor MDPT (2022) Voltammetric sensor based on glassy carbon electrode modified with hierarchical porous carbon, silver sulfide nanoparticles and fullerene for electrochemical monitoring of nitrite in food samples. Food Chem 383:132384. https://doi.org/10.1016/j.foodchem.2022.132384

    Article  CAS  Google Scholar 

  3. Zan M, Rao L, Huang H, Xie W, Zhu D, Li L, Qie X, Guo SS, Zhao XZ, Liu W, Dong WF (2018) A strong green fluorescent nanoprobe for highly sensitive and selective detection of nitrite ions based on phosphorus and nitrogen co-doped carbon quantum dots. Sens Actuators B Chem 262:555–561. https://doi.org/10.1016/j.snb.2017.12.177

    Article  CAS  Google Scholar 

  4. Zheng P, Kasani S, Shi X, Boryczka AE, Yang F, Tang H, Li M, Zheng W, Elswick DE, Wu N (2018) Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array. Anal Chim Acta 1040:158–165. https://doi.org/10.1016/j.aca.2018.08.022

    Article  CAS  Google Scholar 

  5. Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Phua CH, Wangchuk S, Kanatharana P, Thavarungkul P, Limbut W (2022) New electrode material integrates silver nanoprisms with phosphorus-doped carbon nanotubes for forensic detection of nitrite. Electrochimica Acta 436:141439. https://doi.org/10.1016/j.electacta.2022.141439

    Article  CAS  Google Scholar 

  6. Antczak-Chrobot A, Bąk P, Wojtczak M (2018) The use of ionic chromatography in determining the contamination of sugar by-products by nitrite and nitrate. Food Chem 240:648–654. https://doi.org/10.1016/j.foodchem.2017.07.158

    Article  CAS  Google Scholar 

  7. Helmke MS, Duncan MW (2007) Measurement of the NO metabolites, nitrite and nitrate, in human biological fluids by GC-MS. J Chromatogr B 851:83–92. https://doi.org/10.1016/j.jchromb.2006.09.047

    Article  CAS  Google Scholar 

  8. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32:1277–1285. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  9. Deng F, Jiang J, Sirés I (2023) State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Lett 33:17–34. https://doi.org/10.1007/s42823-022-00420-z

    Article  Google Scholar 

  10. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu JP, Wee ATS, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663. https://doi.org/10.1016/j.carbon.2018.01.008

    Article  CAS  Google Scholar 

  11. Bai S, Yang M, Jiang J, He X, Zou J, Xiong Z, Liao G, Liu S (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater Appl 5:78. https://doi.org/10.1038/s41699-021-00259-4

    Article  CAS  Google Scholar 

  12. Chen Y, Tu C, Liu Y, Liu P, Gong P, Wu G, Huang X, Chen J, Liu T, Jiang J (2023) Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Lett 33:561–571. https://doi.org/10.1007/s42823-022-00445-4

    Article  Google Scholar 

  13. Wang J, Qin Q, Li F, Anjarsari Y, Sun W, Azzahiidah R, Zou J, Xiang K, Ma H, Jiang J, Arramel (2022) Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. https://doi.org/10.1007/s42823-022-00401-2

    Article  Google Scholar 

  14. Li F, Anjarsari Y, Wang J, Azzahiidah R, Jiang J, Zou J, Xiang K, Ma H, Arramel (2022) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. https://doi.org/10.1007/s42823-022-00380-4

    Article  Google Scholar 

  15. Jiang J, Bai S, Yang M, Zou J, Li N, Peng J, Wang H, Xiang K, Liu S, Zhai T (2022) Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res 15:5977–5986. https://doi.org/10.1007/s12274-022-4276-8

    Article  CAS  Google Scholar 

  16. Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  CAS  Google Scholar 

  17. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221. https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  18. Zou J, Liao G, Jiang J, Xiong Z, Bai S, Wang H, Wu P, Zhang P, Li X (2022) In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin J Struct Chem 41:2201025–2201033. https://doi.org/10.14102/j.cnki.0254-5861.2021-0039

    Article  CAS  Google Scholar 

  19. Chen Y, Waterhouse GIN, Qiao X, Sun Y, Xu Z (2022) Sensitive analytical detection of nitrite using an electrochemical sensor with STAB-functionalized Nb2C@MWCNTs for signal amplification. Food Chem 372:131356. https://doi.org/10.1016/j.foodchem.2021.131356

    Article  CAS  Google Scholar 

  20. Han Y, Zhang R, Dong C, Cheng F, Guo Y (2019) Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosens Bioelectron 142:111529. https://doi.org/10.1016/j.bios.2019.111529

    Article  CAS  Google Scholar 

  21. Yin H, Zhang Y, Dong H, Liu L, Wang X, Zhang Y, Xu M, Zhou Y (2022) Self-calibrating electrochemical sensors based on uniformly dispersed Ag nanoclusters in nitrogen-doped carbon sheets for determination of nitrite. Food Chem 5:9737–9746. https://doi.org/10.1021/acsanm.2c01949

    Article  CAS  Google Scholar 

  22. Liu X, Zhang T, Li X, Ai S, Zhou S (2022) Non-enzymatic electrochemical sensor based on an AuNPs/Cu-N-C composite for efficient nitrite sensing in sausage samples. New J Chem 46:10415. https://doi.org/10.1039/d2nj01640k

    Article  CAS  Google Scholar 

  23. Saeb E, Asadpour-Zeynali K (2022) A novel ZIF-8@ZIF-67/Au core–shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochimica Acta 417:140278. https://doi.org/10.1016/j.electacta.2022.140278

    Article  CAS  Google Scholar 

  24. Yang Z, Zhou X, Yin Y, Xue H, Fang W (2022) Metal-organic framework derived rod-like Co@carbon for electrochemical detection of nitrite. J Alloys Compd 911:164915. https://doi.org/10.1016/j.jallcom.2022.164915

    Article  CAS  Google Scholar 

  25. Bao ZL, Zhong H, Li XR, Zhang AR, Liu YX, Chen P, Cheng ZP, Qian HY (2021) Core-shell Au@Ag nanoparticles on carboxylated graphene for simultaneous electrochemical sensing of iodide and nitrite. Sens Actuators 345:130319. https://doi.org/10.1016/j.snb.2021.130319

    Article  CAS  Google Scholar 

  26. Cheng Z, Song H, Zhang X, Cheng X, Xu Y, Zhao H, Gao S, Huo L (2022) Enhanced non-enzyme nitrite electrochemical sensing property based on stir bar-shaped ZnO nanorods decorated with nitrogen-doped reduced graphene oxide. Sens Actuators 355:131313. https://doi.org/10.1016/j.snb.2021.131313

    Article  CAS  Google Scholar 

  27. Zhe T, Li M, Li F, Li R, Bai F, Bu T, Jia P, Wang L (2022) Integrating electrochemical sensor based on MoO3/Co3O4 heterostructure for highly sensitive sensing of nitrite in sausages and water. Food Chem 367:130666. https://doi.org/10.1016/j.foodchem.2021.130666

    Article  CAS  Google Scholar 

  28. Lu L (2019) Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid. Sens Actuators 281:182–190. https://doi.org/10.1016/j.snb.2018.10.074

    Article  CAS  Google Scholar 

  29. Lü H, Wang H, Yang L, Zhou Y, Xu L, Hui N, Wang D (2022) A sensitive electrochemical sensor based on metal cobalt wrapped conducting polymer polypyrrole nanocone arrays for the assay of nitrite. Microchim Acta 189:26. https://doi.org/10.1007/s00604-021-05131-2

    Article  CAS  Google Scholar 

  30. Niu X, Bo X, Guo L (2021) Ultrasensitive simultaneous voltammetric determination of 4-aminophenol and acetaminophen based on bimetallic MOF-derived nitrogen-doped carbon coated CoNi alloy. Anal Chim Acta 1145:37–45. https://doi.org/10.1016/j.aca.2020.12.020

    Article  CAS  Google Scholar 

  31. Niu HJ, Chen YP, Sun RM, Wang AJ, Mei LP, Zhang L, Feng JJ (2020) Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery. J Power Sour 480:229107. https://doi.org/10.1016/j.jpowsour.2020.229107

    Article  CAS  Google Scholar 

  32. Feng YY, Hu HS, Liu RJ, Deng G, Wang XY, Zhu M (2022) FeNC catalysts with high catalytic activity and stability for oxygen reduction reaction. Chin J Struct Chem 41:2209080–2209086. https://doi.org/10.14102/j.cnki.0254-5861.2022-0053

    Article  CAS  Google Scholar 

  33. Qiu Y, Liu J, Sun M, Yang J, Liu J, Zhang X, Liu X, Zhang L (2022) Rational design of electrocatalyst with abundant Co/MoN heterogeneous domains for accelerating hydrogen evolution reaction. Chin J Struct Chem 41:2207040–2207045. https://doi.org/10.14102/j.cnki.0254-5861.2022-0144

    Article  CAS  Google Scholar 

  34. Wang Y, Zhu L, Wang J, Zhang Z, Yu J, Yang Z (2020) Enhanced chemisorption and catalytic conversion of polysulfides via CoFe@NC nanocubes modified separator for superior Li–S batteries. Chem Eng J 433:133792. https://doi.org/10.1016/j.cej.2021.133792

    Article  CAS  Google Scholar 

  35. Jiang D, Pang J, You Q, Liu T, Chu Z, Jin W (2019) Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosens Bioelectron 124–125:260–267. https://doi.org/10.1016/j.bios.2018.09.094

    Article  CAS  Google Scholar 

  36. Li J, Kang Y, Wei W, Li X, Lei Z, Liu P (2021) Well-dispersed ultrafine CoFe nanoalloy decorated N-doped hollow carbon microspheres for rechargeable/flexible Zn-air batteries. Chem Eng J 407:127961. https://doi.org/10.1016/j.cej.2020.127961

    Article  CAS  Google Scholar 

  37. Zhuang J, Pan H, Feng W (2023) 3D urchin–like CoVO/MXene nanosheet composites for enhanced detection signal of nitrite. Sens Actuators 378:133207. https://doi.org/10.1016/j.snb.2022.133207

    Article  CAS  Google Scholar 

  38. Zhe T, Shen S, Li F, Li R, Li M, Ma K, Xu K, Jia P, Wang D (2023) Bimetallic-MOF-derived crystalline–amorphous interfacial sites for highly efficient nitrite sensing. Food Chem 402:134228. https://doi.org/10.1016/j.foodchem.2022.134228

    Article  CAS  Google Scholar 

  39. Qu K, Hu X, Li Q (2023) Electrochemical environmental pollutant detection enabled by waste tangerine peel-derived biochar. Diam Relat Mater 131:109617. https://doi.org/10.1016/j.diamond.2022.109617

    Article  CAS  Google Scholar 

  40. Pasarakonda S, Ponnada S, Gorle DB, Bose RSC, Palariya A, Kiai MS, Gandham HB, Kathiresan M, Sharma RK, Nowduri A (2023) On the role of graphene oxide in bifunctional Ni/MOF/rGO composites in electrochemical nitrate detection and oxygen evolution reaction. New J Chem 47:725. https://doi.org/10.1039/d2nj04648b

    Article  CAS  Google Scholar 

  41. Gao P, Zhao S, Qu X, Qian X, Duan F, Lu S, Zhu H, Du M (2022) Bifunctional high-entropy alloys for sensitive nitrite detection and oxygen reduction reaction. Electrochimica Acta 432:141160. https://doi.org/10.1016/j.electacta.2022.141160

    Article  CAS  Google Scholar 

  42. Zhang K, Wang MX, Zeng HY, Li Z (2022) Ag-Ag2O decorated multi-walled carbon nanotubes/NiCoAl hydrotalcite sensor for trace nitrite quantification. Microchim Acta 189:411. https://doi.org/10.1007/s00604-022-05513-0

    Article  CAS  Google Scholar 

  43. Paisanpisuttisin A, Poonwattanapong P, Rakthabut P, Ariyasantichai P, Prasittichai C, Siriwatcharapiboon W (2022) Sensitive electrochemical sensor based on nickel/PDDA/reduced graphene oxide modified screen-printed carbon electrode for nitrite detection. RSC Adv 12:29491. https://doi.org/10.1039/d2ra03918d

    Article  CAS  Google Scholar 

  44. Wang S, Xue Y, Yu Z, Huang F, Jin Y (2023) Layered 2D MOF nanosheets grown on CNTs substrates for efficient nitrite sensing. Mater Today Chem 30:101490. https://doi.org/10.1016/j.mtchem.2023.101490

    Article  CAS  Google Scholar 

  45. Luo L, Xu QQ, Chen KK, Liu ZG, Guo Z (2023) Carbon spheres decorated with Fe2O3/Fe3C/Fe composite nanoparticles for highly sensitive and selective electrochemical determination of nitrite (NO2-). Sens Actuators 382:133488. https://doi.org/10.1016/j.snb.2023.133488

    Article  CAS  Google Scholar 

  46. Anurag A, Al-Hamry A, Attuluri Y, Palaniyappan S, Wagner G, Dentel D, Tegenkamp C, Kanoun O (2023) Optimized reduction of a graphene oxide-MWCNT composite with electrochemically deposited copper nanoparticles on screen printed electrodes for a wide range of detection of nitrate. ChemElectroChem 10:e202200945. https://doi.org/10.1002/celc.202200945

    Article  CAS  Google Scholar 

  47. Sudhakara SM, Devendrachari MC, Khan F, Thippeshappa S, Kotresh HMN (2023) Highly sensitive and selective detection of nitrite by polyaniline linked tetra amino cobalt (II) phthalocyanine surface functionalized ZnO hybrid electrocatalyst. Surf Interfaces 36:102565. https://doi.org/10.1016/j.surfin.2022.102565

    Article  CAS  Google Scholar 

  48. Lei H, Zhu H, Sun S, Zhu Z, Hao J, Lu S, Cai Y, Zhang M, Du M (2021) Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochimica Acta 365:137375. https://doi.org/10.1016/j.electacta.2020.137375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hubei Province, China (No.2021CFB1192) and the Graduate Innovative Fund of Wuhan Institute of Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Yang or Yuanyuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Gu, H., Yang, J. et al. A high sensitivity strategy of nitrite detection based on CoFe@NC nanocubes modified glassy carbon electrode. Carbon Lett. 33, 2075–2086 (2023). https://doi.org/10.1007/s42823-023-00558-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00558-4

Keywords

Navigation