Skip to main content
Log in

Ag-Ag2O decorated multi-walled carbon nanotubes/NiCoAl hydrotalcite sensor for trace nitrite quantification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Ag-Ag2O-decorated multiwall carbon nanotube/NiCoAl-hydrotalcite (CNT/LDH-Ag) composites were designed and synthesized for nitrite quantification. The materials were characterized by various techniques, and their electrochemical NO2 detection performances investigated using amperometric and differential pulse voltammetry (DPV) techniques. The Ag-Ag2O nanoparticles (NPs) were anchored on the surface of the CNT/LDH-Ag composites. At a suitable amount of the Ag-Ag2O loading, the Ag-Ag2O NPs with small particle size were distributed evenly on the CNT/LDH surface, increasing the surface area of the composites. The optimal CNT/LDH-Ag3 composite exhibited a high electrochemical activity for NO2 oxidation in pH 7.0. Furthermore, the optimal CNT/LDH-Ag3 composite was fabricated for trace NO2 quantification. The proposed sensor displayed a high sensitivity (0.0960 μA·μM−1·cm−2) and fast response (< 3 s) toward NO2 in a wide linear range from 0.250 μmol·L−1 to 4.00 mmol·L−1 with a low detection limit of 0.0590 μmol·L−1(S/N = 3). The sensor provided an outstanding analytical performance with a desirable recovery (95.3 ~ 107%, RSD < 1.05%) in real sample. As a result, the proposed sensor can be used for the real-time quantification of trace NO2 in the biological, food, and environmental fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marlinda AR, An’amt MN, Yusoff N, Sagadevan S, Wahab YA, Johan MR (2022) Recent progress in nitrates and nitrites sensor with graphene-based nanocomposites as electrocatalysts. Trends Environ Anal Chem 34:e00162

    Article  CAS  Google Scholar 

  2. Zhe TT, Li RX, Wang QZ, Shi D, Li F, Liu YN, Liang SY, Sun XY, Cao YY, Wang L (2020) In situ preparation of FeSe nanorods-functionalized carbon cloth for efficient and stable electrochemical detection of nitrite. Sensor Actuat B-Chem 321:128452

    Article  CAS  Google Scholar 

  3. Campanella B, Onor M, Pagliano E (2017) Rapid determination of nitrate in vegetables by gas chromatography mass spectrometry. Anal Chim Acta 980:33–40

    Article  CAS  PubMed  Google Scholar 

  4. Hatamie A, Nassiri M, Alivand MD, Bhatnagar A (2018) Trace analysis of nitrite ions in environmental samples by using in-situ synthesized Zein biopolymeric nanoparticles as the novel green solid phase extractor. Talanta 176:156–164

    Article  CAS  PubMed  Google Scholar 

  5. Croitoru MD (2012) Nitrite and nitrate can be accurately measured in samples of vegetal and animal origin using an HPLC-UV/VIS technique. J Chromatogr B 911:154–161

    Article  CAS  Google Scholar 

  6. Wang X, Adams E, Schepdael AV (2012) A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta 97:142–144

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Waterhouse GI, Qiao X, Sun Y, Xu Z (2022) Sensitive analytical detection of nitrite using an electrochemical sensor with STAB-functionalized Nb2C@MWCNTs for signal amplification. Food Chem 372:131356

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Nie JT, Wei HY, Xu HT, Wang Q, Cong YQ, Tao JQ, Zhang Y, Chu LL, Zhou Y, Wu XY (2018) Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sensor Actuat B-Chem 258:1107–1116

    Article  CAS  Google Scholar 

  9. Yang Z, Zhou X, Yin Y, Fang W (2021) Determination of nitrite by noble metal nanomaterial-based electrochemical sensors: a minireview. Anal Lett 54(18):2826–2850

    Article  CAS  Google Scholar 

  10. Amali RKA, Lim HN, Ibrahim I, Huang NM, Zainal Z, Ahmad SAA (2021) Significance of nanomaterials in electrochemical sensors for nitrate detection: a review. Trends Environ Anal Chem 31:e00135

    Article  CAS  Google Scholar 

  11. Sohrabi H, Dezhakam E, Khataee A, Nozohouri E, Majidi MR, Mohseni N, Trofimov E, Yoon Y (2022) Recent trends in layered double hydroxides based electrochemical and optical (bio) sensors for screening of emerging pharmaceutical compounds. Environ Res 211:113068

    Article  CAS  PubMed  Google Scholar 

  12. Yuan J, Xu S, Zeng HY, Cao X, Dan PA, Xiao GF, Ding PX (2018) Hydrogen peroxide sensor based on chitosan/2D layered double hydroxide composite for the determination of H2O2. Bioelectrochemistry 123:94–102

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo RC, Moolayadukkam S, Thomas S, Zaeem MA, Matte HR (2021) Solution processed Ni2Co layered double hydroxides for high performance electrochemical sensors. Appl Surf Sci 541:148270

    Article  CAS  Google Scholar 

  14. An S, Shang N, Chen B, Kang Y, Su M, Wang C, Zhang Y (2021) Co-Ni layered double hydroxides wrapped on leaf-shaped copper oxide hybrids for non-enzymatic detection of glucose. J Colloid Interf Sci 592:205–214

    Article  CAS  Google Scholar 

  15. Aziz A, Asif M, Ashraf G, Azeem M, Majeed I, Ajmal M, Wang J, Liu H (2019) Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review Microchim Acta 186:671

    Article  CAS  Google Scholar 

  16. Moolayadukkam S, Thomas S, Sahoo RC, Lee CH, Lee SU, Matte HR (2020) Role of transition metals in layered double hydroxides for differentiating the oxygen evolution and nonenzymatic glucose sensing. ACS Appl Mater Interfaces 12(5):6193–6204

    Article  CAS  PubMed  Google Scholar 

  17. Asif M, Aziz A, Wang HT, Wang ZY, Wang W, Ajmal M, Xiao F, Chen XD, Liu HF (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim Acta 186:61

    Article  Google Scholar 

  18. Gualandi I, Vlamidis Y, Mazzei L, Musella E, Giorgetti M, Christian M, Morandi V, Scavetta E, Tonelli D (2018) Ni/Al layered double hydroxide and carbon nanomaterial composites for glucose sensing. ACS Appl Nano Mater 2(1):143–155

    Article  Google Scholar 

  19. Li Z, Zeng HY, Cao XJ, Li HB, Long YW, Feng B, Lv SB (2021) High-sensitive sensor for the simultaneous determination of phenolics based on multi-walled carbon nanotube/NiCoAl hydrotalcite electrode material. Microchim Acta 188:308

    Article  CAS  Google Scholar 

  20. Zhan TR, Ding GY, Cao W, Li JM, She XL, Teng HN (2019) Amperometric sensing of catechol by using a nanocomposite prepared from Ag/Ag2O nanoparticles and N. S-doped carbon quantum dots Microchim Acta 186:743

    Article  Google Scholar 

  21. Dong S, Yang Z, Liu B, Zhang J, Xu P, Xiang M, Lu T (2021) (Pd, Au, Ag) nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications. J Electroanal Chem 897:115562

    Article  CAS  Google Scholar 

  22. Ma C, Qian YY, Zhang SP, Song HO, Gao JJ, Wang S, Liu MX, Xie KJ, Zhang XM (2018) Temperature-controlled ethanolamine and Ag-nanoparticle dual-functionalization of graphene oxide for enhanced electrochemical nitrite determination. Sensor Actuat B-Chem 274:441–450

    Article  CAS  Google Scholar 

  23. Li HB, Xiao GF, Zeng HY, Cao XJ, Zou KM, Xu S (2020) Supercapacitor based on the CuCo2S4@NiCoAl hydrotalcite array on Ni foam with high-performance. Electrochim Acta 352:136500

    Article  CAS  Google Scholar 

  24. Dai BY, Fang JJ, Yu YR, Sun ML, Huang HM, Lu CH, Kou JH, Zhao YJ, Xu ZZ (2020) Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv Mater 32:1906361

    Article  CAS  Google Scholar 

  25. Pilloni M, Kumar VB, Ennas G, Porat Z, Scano A, Cabras V, Gedanken A (2018) Formation of metallic silver and copper in non-aqueous media by ultrasonic radiation. Ultrason Sonochem 47:108–113

    Article  CAS  PubMed  Google Scholar 

  26. Shen JC, Zeng HY, Chen CR, Xu S (2020) A facile fabrication of Ag2O-Ag/ZnAl-oxides with enhanced visible-light photocatalytic performance for tetracycline degradation. Appl Clay Sci 185:105413

    Article  CAS  Google Scholar 

  27. Long YW, Zeng HY, Li HB, Zou KM, Xu S, Cao XJ (2020) Sulfidation of CoAl-layered double hydroxide on Ni foam for high-performance supercapacitors. Electrochim Acta 361:137098

    Article  CAS  Google Scholar 

  28. Cao XJ, Zeng HY, Cao X, Xu S, Alain GBFC, Zou KM, Liu L (2020) 3D-hierarchical mesoporous CuCo2S4@NiCoAl hydrotalcite/Ni foam material for high-performance supercapacitors. Appl lay Sci 199:105864

    CAS  Google Scholar 

  29. Abulizi A, Yang GH, Zhu JJ (2014) One-step simple sonochemical fabrication and photocatalytic properties of Cu2O-rGO composites. Ultrason Sonochem 21:129–135

    Article  CAS  PubMed  Google Scholar 

  30. Han J, Zeng HY, Xu S, Chen CR, Liu XJ (2016) Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange. Appl Catal A Gen 527:72–80

    Article  CAS  Google Scholar 

  31. Jia Y, He LF, Kong LT, Liu JY, Guo Z, Meng FL, Luo T, Li MQ, Liu JH (2009) Synthesis of close-packed multi-walled carbon nanotube bundles using Mo as catalyst. Carbon 47:1652–1658

    Article  CAS  Google Scholar 

  32. Liu F, Chen YY, Liu Y, Bao JC, Han M, Dai ZH (2019) Integrating ultrathin and modified NiCoAl-layered double-hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors. Nanoscale 11(20):9896–9905

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y, Wu JJ, Xiao TT, Tang Z, Shen JY, Li HJ, Zhou Y, Zou ZG (2019) Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Appl Catal B-Environ 255:117771

    Article  CAS  Google Scholar 

  34. Garg N, Basu M, Ganguli AK (2014) Nickel cobaltite nanostructures with enhanced supercapacitance activity. J Phys Chem C 118:17332–17341

    Article  CAS  Google Scholar 

  35. Kumar A, Mittal A, Das A, Sen D, Mariappan CR (2020) Mesoporous electroactive silver doped calcium borosilicates: structural, antibacterial and myogenic potential relationship of improved bio-ceramics. Ceram Int 47:3586–3596

    Article  Google Scholar 

  36. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    Article  CAS  Google Scholar 

  37. Wan Y, Zheng YF, Wan HT, Yin HY, Song XC (2017) A novel electrochemical sensor based on Ag nanoparticles decorated multi-walled carbon nanotubes for applied determination of nitrite. Food Control 73:1507–1513

    Article  CAS  Google Scholar 

  38. Lu L (2019) Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid. Sensor Actuat B Chem 281:182–190

    Article  CAS  Google Scholar 

  39. Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Balamurugan TST (2019) Ultrasonic energy-assisted preparation of β-cyclodextrin-carbon nanofiber composite: Application for electrochemical sensing of nitrofurantoin. Ultrason Sonochem 52:391–400

    Article  CAS  PubMed  Google Scholar 

  40. Chen L, Zheng J (2022) Two-step hydrothermal and ultrasound-assisted synthesis of CB/NiCo2S4@CeO2 composites for high-sensitivity electrochemical detection of nitrite. Microchem J 181:107717

    Article  CAS  Google Scholar 

  41. Li Y, Zhou H, Zhang J, Cui B, Fang Y (2022) Determination of nitrite in food based on its sensitizing effect on cathodic electrochemiluminescence of conductive PTH-DPP films. Food Chem 397:133760

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Scientific Research Fund of Hunan Provincial Education Department (20A480) and Key Research and Development Program of Hunan Province (2018SK20110).

Author information

Authors and Affiliations

Authors

Contributions

Kai Zhang: writing — reviewing, software and editing, data curation. Hong-Yan Zeng: conceptualization, methodology, supervision. Ming-Xin Wang: visualization, writing — original draft preparation. Zhen Li: visualization, investigation.

Corresponding author

Correspondence to Hong-Yan Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2013 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wang, MX., Zeng, HY. et al. Ag-Ag2O decorated multi-walled carbon nanotubes/NiCoAl hydrotalcite sensor for trace nitrite quantification. Microchim Acta 189, 411 (2022). https://doi.org/10.1007/s00604-022-05513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05513-0

Keywords

Navigation