Skip to main content
Log in

Investigation of the effect of catalyst type, concentration, and growth time on carbon nanotube morphology and structure

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Different materials have been shown to "catalyze" carbon nanotube (CNT) growth in chemical vapor deposition (CVD) when they become nano-sized particles. Catalysts, which act as a kind of "seed" for CNT growth, show two types of behavior in the CVD method; precipitation of carbon atoms from the eutectic alloy forming a kind of alloy with carbon; the fact that the catalyst remains as a solid phase and forms a carbon surface layer during the CVD process. This study examines the relationship between the iron-group and non-iron-group catalyst types and the catalyst concentration and growth time of CVD-based CNT growth via emphasizing growth mechanisms. The novelty of this work is to compare and evaluate the effects of catalyst type, concentration, and growth time, which are three critical CVD parameters, on the final nanotube morphology. It was utilized five different catalysts (Fe2O3, Fe3O4, Nb2O5, Au, and Pt), three different growth durations (3, 5, and 7 min), and three different catalyst concentrations (2, 4, and 6 wt%) to explore the morphological differences on CNT synthesis by CVD under the same process parameters. The results demonstrated that catalyst type is the most influential parameter in CVD-based CNT synthesis, while catalyst concentration and growth time are indispensable elements for the uniformity and small diameter in the final morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Su CH, Lin CR, Hung CH, Chang CY, Stobinski L (2006) Novel process to synthesize the well-size-controlled carbon nanotubes using Fe/TiO2 as catalyst by sol–gel method. Surf Coatings Technol 200(10):3211–3214. https://doi.org/10.1016/j.surfcoat.2005.07.013

    Article  CAS  Google Scholar 

  2. Garg A, Chalak HD, Belarbi MO, Zenkour AM, Sahoo R (2021) Estimation of carbon nanotubes and their applications as reinforcing composite materials–an engineering review. Compos Struct 272:114234. https://doi.org/10.1016/j.compstruct.2021.114234

    Article  CAS  Google Scholar 

  3. Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095. https://doi.org/10.1016/j.mseb.2021.115095

    Article  CAS  Google Scholar 

  4. Ribeiro H, Schnitzler MC, da Silva WM, Santos AP (2021) Purification of carbon nanotubes produced by the electric arc-discharge method. Surfaces Interfaces 26:101389. https://doi.org/10.1016/j.surfin.2021.101389

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhao J, Fang Y, Liu Y, Zhao X (2018) Preparation of long linear carbon chain inside multi-walled carbon nanotubes by cooling enhanced hydrogen arc discharge method. Nanoscale 10:17824–17833. https://doi.org/10.1039/C8NR05465G

    Article  CAS  Google Scholar 

  6. Ismail RA, Mohsin MH, Ali AK, Hassoon KI, Erten-Ela S (2020) Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Phys E Low-Dimens Syst Nanostruct 119:113997. https://doi.org/10.1016/j.physe.2020.113997

    Article  CAS  Google Scholar 

  7. Esteves LM, Oliveira HA, Passos FB (2018) Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review. J Ind Eng Chem 65:1–12. https://doi.org/10.1016/j.jiec.2018.04.012

    Article  CAS  Google Scholar 

  8. Manawi Y, Samara A, Al-Ansari T, Atieh M (2018) A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials (Basel) 11(5):822. https://doi.org/10.3390/ma11050822

    Article  CAS  Google Scholar 

  9. Das R, Shahnavaz Z, Ali M, Islam MM, Hamid SBA (2016) Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res Lett 11:1–23. https://doi.org/10.1186/s11671-016-1730-0

    Article  CAS  Google Scholar 

  10. Su Y, Zhang Y (2015) Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon 83:90–99. https://doi.org/10.1016/j.carbon.2014.11.023

    Article  CAS  Google Scholar 

  11. Mathur RB, Singh BP, Pande S (2016) Multiwalled carbon nanotubes. In: Mathur RB (ed) Carbon nanomaterials: synthesis, structure, properties and applications, 1st edn. Taylor & Francis, New York, pp 97–121

    Chapter  Google Scholar 

  12. Gangele A, Sharma CS, Pandey AK (2017) Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review. J Nanosci Nanotechnol 17:2256–2273. https://doi.org/10.1166/jnn.2017.13818

    Article  CAS  Google Scholar 

  13. Shukrullah S, Mohamed NM, Khan Y, Naz MY, Ghaffar A, Ahmad I (2017) Effect of gas flowrate on nucleation mechanism of MWCNTs for a compound catalyst. J Nanomater 2017:3407352. https://doi.org/10.1155/2017/3407352

    Article  CAS  Google Scholar 

  14. Maruyama T (2018) Current status of single-walled carbon nanotube synthesis from metal catalysts by chemical vapor deposition. Mater Express 8:1–20. https://doi.org/10.1166/mex.2018.1407

    Article  CAS  Google Scholar 

  15. Mohammadi F, Tavakol H (2018) Synthesis of phosphorus doped carbon nanotubes using chemical vapor deposition. Fullerenes Nanotubes Carbon Nanostruct 26:218–225. https://doi.org/10.1080/1536383X.2018.1428567

    Article  CAS  Google Scholar 

  16. Hong Z, Ning TU, Zhang W, Zhang M, Wang J (2021) Novel synthesis of silicon/carbon nanotubes microspheres as anode additives through chemical vapor deposition in fluidized bed reactors. Scr Mater 192:49–54. https://doi.org/10.1016/j.scriptamat.2020.09.048

    Article  CAS  Google Scholar 

  17. Li M, Hachiya S, Chen Z, Osowa T, Sugime H, Noda S (2021) Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide. Carbon 182:23–31. https://doi.org/10.1016/j.carbon.2021.05.035

    Article  CAS  Google Scholar 

  18. Bhaviripudi S, Mile E, Steiner SA, Zare AT, Dresselhaus MS, Belcher AM, Kong J (2007) CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc 129(6):1516–1517. https://doi.org/10.1021/ja0673332

    Article  CAS  Google Scholar 

  19. Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y (2020) Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem Rev 120:2693–2758. https://doi.org/10.1021/acs.chemrev.9b00835

    Article  CAS  Google Scholar 

  20. Shukrullah S, Naz MY, Mohamed NM, Ibrahim KA, Ghaffar A, AbdEl- Salam NM (2019) Synthesis of MWCNT forests with alumina-supported Fe2O3 catalyst by using a floating catalyst chemical vapor deposition technique. J Nanomater 2019:4642859. https://doi.org/10.1155/2019/4642859

    Article  CAS  Google Scholar 

  21. Hou P, Zhang F, Zhang L, Liu C, Cheng HM (2022) Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv Funct Mater 32:2108541. https://doi.org/10.1002/adfm.202108541

    Article  CAS  Google Scholar 

  22. Laurent C, Flahaut E, Peigney A, Rousset A (1998) Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New J Chem 22:1229–1237. https://doi.org/10.1039/A801991F

    Article  CAS  Google Scholar 

  23. Ando Y, Zhao X, Sugai T, Kumar M (2004) Growing carbon nanotubes. Mater Today 7(10):22–29. https://doi.org/10.1016/S1369-7021(04)00446-8

    Article  CAS  Google Scholar 

  24. Lee CJ, Park J, Huh Y, Lee JY (2001) Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 343(1–2):33–38. https://doi.org/10.1016/S0009-2614(01)00680-7

    Article  Google Scholar 

  25. Wu Q, Qiu L, Zhang L, Liu H, Ma R, Xie P, Liu R, Hou P, Ding F, Liu C, He M (2022) Temperature-dependent selective nucleation of single-walled carbon nanotubes from stabilized catalyst nanoparticles. Chem Eng J 431(4):133487. https://doi.org/10.1016/j.cej.2021.133487

    Article  CAS  Google Scholar 

  26. McLean B, Mitchell I, Ding F (2022) Mechanism of alcohol chemical vapor deposition growth of carbon nanotubes: catalyst oxidation. Carbon 191:1–9. https://doi.org/10.1016/j.carbon.2022.01.046

    Article  CAS  Google Scholar 

  27. Han F, Qian L, Wu Q, Li D, Hao S, Feng L, Xin L, Yang T, Zhanf J, He M (2022) Narrow-chirality distributed single-walled carbon nanotube synthesized from oxide promoted Fe–SiC catalyst. Carbon 191:146–152. https://doi.org/10.1016/j.carbon.2022.01.052

    Article  CAS  Google Scholar 

  28. Maruyama T (2021) Carbon nanotube growth mechanisms. In: Abraham J, Thomas S, Kalarikkal N (eds) Handbook of carbon nanotubes, 1st edn. Springer, Cham, pp 1–31

    Google Scholar 

  29. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758. https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  Google Scholar 

  30. Wang X-D, Vinodgopal K, Dai G-P (2019) Synthesis of carbon nanotubes by catalytic chemical vapor deposition. In: Saleh HED, El-Sheikh SMM (eds) Perspective of carbon nanotubes, 1st edn. Intechopen, London, pp 13–33

    Google Scholar 

  31. Hoecker C, Smail F, Bajada M, Pick M, Boies A (2016) Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis. Carbon 96:116–124. https://doi.org/10.1016/j.carbon.2015.09.050

    Article  CAS  Google Scholar 

  32. Hoecker C, Smail F, Pick M, Boies A (2017) The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel. Chem Eng J 314:388–395. https://doi.org/10.1016/j.cej.2016.11.157

    Article  CAS  Google Scholar 

  33. Rashid HU, Yu K, Umar MN, Anjum MN, Khan K, Ahmad N, Jan MT (2015) Catalyst role in chemical vapor deposition (CVD) process: a review. Rev Adv Mater Sci 40(3):235–248

    Google Scholar 

  34. He M, Fedotov PV, Chernov A, Obraztsova ED, Jiang H, Wei N, Cui H, Sainio J, Zhang W, Jin H, Karppinen M, Kauppinen EI, Loiseau A (2016) Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source. Carbon 108:521–528. https://doi.org/10.1016/j.carbon.2016.07.048

    Article  CAS  Google Scholar 

  35. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500(1–3):218–241. https://doi.org/10.1016/S0039-6028(01)01558-8

    Article  CAS  Google Scholar 

  36. Park J-B, Choi G-S, Cho Y-S, Hong S-Y, Kim D, Choi S-Y, Lee J-H, Cho K-I (2002) Characterization of Fe-catalyzed carbon nanotubes grown by thermal chemical vapor deposition. J Cryst Growth 244(2):211–217. https://doi.org/10.1016/S0022-0248(02)01661-5

    Article  CAS  Google Scholar 

  37. Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rosen A, Bolton K (2008) The importance of strong carbon− metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett 8(2):463–468. https://doi.org/10.1021/nl072431m

    Article  CAS  Google Scholar 

  38. Arthur JR, Cho AY (1973) Adsorption and desorption kinetics of Cu and Au on (0001) graphite. Surf Sci 36(2):641–660. https://doi.org/10.1016/0039-6028(73)90409-3

    Article  CAS  Google Scholar 

  39. Ghai V, Chatterjee K, Agnihotri PK (2021) Vertically aligned carbon nanotubes-coated aluminium foil as flexible supercapacitor electrode for high power applications. Carbon Lett 31:473–481. https://doi.org/10.1007/s42823-020-00176-4

    Article  Google Scholar 

  40. Khorrami SA, Lotfi R (2016) Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst. J Saudi Chem Soc 20(4):432–436. https://doi.org/10.1016/j.jscs.2013.04.004

    Article  CAS  Google Scholar 

  41. Esteves LM, Oliveira HA, Xing Y, Passos FB (2021) Cobalt supported on carbon nanotubes for methane chemical vapor deposition for the production of new carbon nanotubes. New J Chem 45(31):14218–14226. https://doi.org/10.1039/D1NJ02442F

    Article  CAS  Google Scholar 

  42. Ma Z, Wang Y, Qin J, Yao Z, Cui X, Cui B, Yue Y, Wang Y, Wang C (2021) Growth of carbon nanotubes on the surface of carbon fiber using Fe–Ni bimetallic catalyst at low temperature. Ceram Int 47(2):1625–1631. https://doi.org/10.1016/j.ceramint.2020.08.278

    Article  CAS  Google Scholar 

  43. Li X, Gray ER, Islam AE, Sargent GA, Maruyama B, Amama PB (2020) Magnesia and magnesium aluminate catalyst substrates for carbon nanotube carpet growth. ACS Appl Nano Mater 3(2):1830–1840. https://doi.org/10.1021/acsanm.9b02509

    Article  CAS  Google Scholar 

  44. Yahyazadeh A, Khoshandam B (2017) Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron–molybdenum alloy thin layer catalysts. Results Phys 7:3826–3837. https://doi.org/10.1016/j.rinp.2017.10.001

    Article  Google Scholar 

  45. Qian Y, Lu S, Gao F (2011) Cadmium-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. Mater Res Bull 46(6):823–829. https://doi.org/10.1016/j.materresbull.2011.02.032

    Article  CAS  Google Scholar 

  46. Pasha MA, Shafiekhani A, Vesaghi MA (2009) Hot filament CVD of Fe–Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas. Appl Surf Sci 256(5):1365–1371. https://doi.org/10.1016/j.apsusc.2009.08.090

    Article  CAS  Google Scholar 

  47. Yazyev OV, Pasquarello A (2008) Carbon diffusion in CVD growth of carbon nanotubes on metal nanoparticles. Phys Status Solidi 245:2185–2188. https://doi.org/10.1002/pssb.200879573

    Article  CAS  Google Scholar 

  48. Homma Y (2014) Gold nanoparticles as the catalyst of single-walled carbon nanotube synthesis. Catalysts 4(1):38–48. https://doi.org/10.3390/catal4010038

    Article  CAS  Google Scholar 

  49. Kanada R, Pan L, Akita S, Okazaki N, Hirahara N, Nakayama Y (2008) Synthesis of multiwalled carbon nanocoils using codeposited thin film of Fe–Sn as catalyst. Jpn J Appl Phys 47:1949. https://doi.org/10.1143/JJAP.47.1949

    Article  CAS  Google Scholar 

  50. Li B, Wu Y, Li N, Chen X, Zeng X, Arramel ZX, Jiang J (2020) Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl Mater Interfaces 12:9261–9267. https://doi.org/10.1021/acsami.9b20552

    Article  CAS  Google Scholar 

  51. Wong YM, Wei S, Kang WP, Davidson JL, Hofmeister W, Huang JH, Cui Y (2004) Carbon nanotubes field emission devices grown by thermal CVD with palladium as catalysts. Diam Relat Mater 13(11–12):2105–2112. https://doi.org/10.1016/j.diamond.2004.06.018

    Article  CAS  Google Scholar 

  52. He X, Bai S, Jiang J, Ong W-J, Peng J, Xiong Z, Liao G, Zou J, Li N (2021) Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chem Eng J Adv 8:100175. https://doi.org/10.1016/j.ceja.2021.100175

    Article  CAS  Google Scholar 

  53. Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  Google Scholar 

  54. Wolkenstein T (1960) The electron theory of catalysis on semiconductors. Adv Catal 12:189–264. https://doi.org/10.1016/S0360-0564(08)60603-3

    Article  Google Scholar 

  55. Mirabella DA, Desimone PM, Ponce MA, Aldao CM, Silva LF, Catto AC, Longo E (2021) Effects of donor density on power-law response in tin dioxide gas sensors. Sensors Actuators B Chem 329:129253. https://doi.org/10.1016/j.snb.2020.129253

    Article  CAS  Google Scholar 

  56. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu J-P, Wee ATS, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663. https://doi.org/10.1016/j.carbon.2018.01.008

    Article  CAS  Google Scholar 

  57. Wolkenstein T (1991) Electron transitions in chemisorption. In: Morrison R (ed) Electronic processes on semiconductor surfaces during chemisorption, 1st edn. Springer, Boston, pp 83–124

    Chapter  Google Scholar 

  58. Shao G (2021) Work function and electron affinity of semiconductors: doping effect and complication due to Fermi level pinning. Energy Environ Mater 4:273–276. https://doi.org/10.1002/eem2.12218

    Article  CAS  Google Scholar 

  59. Zou J, Wu J, Wang Y, Deng F, Jiang J, Zhang Y, Liu S, Li N, Zhang H, Yu J, Zhai T, Alshareef HN (2022) Additive-mediated intercalation and surface modification of MXenes. Chem Soc Rev 51:2972–2990. https://doi.org/10.1039/D0CS01487G

    Article  CAS  Google Scholar 

  60. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129. https://doi.org/10.1016/S0360-0564(02)45013-4

    Article  CAS  Google Scholar 

  61. Jiao S, Fu X, Huang H (2022) Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Adv Funct Mater 32(4):2107651. https://doi.org/10.1002/adfm.202107651

    Article  CAS  Google Scholar 

  62. Speck FD, Zagalskaya A, Alexandrov V, Cherevko S (2021) Periodicity in the electrochemical dissolution of transition metals. Angew Chem Int Ed 60(24):13343–13349. https://doi.org/10.1002/anie.202100337

    Article  CAS  Google Scholar 

  63. Lobo LS, Carabineiro SAC (2021) Kinetics of carbon nanotubes and graphene growth on iron and steel: evidencing the mechanisms of carbon formation. Nanomaterials 11(1):143. https://doi.org/10.3390/nano11010143

    Article  CAS  Google Scholar 

  64. Maruyama T, Okada T, Sharma KP, Suzuki T, Saida T, Naritsuka S, Lizumi Y, Okazaki T, Iijima S (2020) Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst. Appl Surf Sci 509:145340. https://doi.org/10.1016/j.apsusc.2020.145340

    Article  CAS  Google Scholar 

  65. Altay MC, Eroglu S (2013) Thermodynamic analysis and chemical vapor deposition of multi-walled carbon nanotubes from pre-heated CH4 using Fe2O3 particles as catalyst precursor. J Cryst Growth 364:40–45. https://doi.org/10.1016/j.jcrysgro.2012.11.062

    Article  CAS  Google Scholar 

  66. Altay MC, Eroglu S (2012) Synthesis of multi-walled C nanotubes by Fe–Ni (70 wt.%) catalyzed chemical vapor deposition from pre-heated CH4. Mater Lett 67(1):124–127. https://doi.org/10.1016/j.matlet.2011.09.011

    Article  CAS  Google Scholar 

  67. Li WZ, Wen JG, Sennett M, Ren ZF (2003) Clean double-walled carbon nanotubes synthesized by CVD. Chem Phys Lett 368(3–4):299–306. https://doi.org/10.1016/S0009-2614(02)01862-6

    Article  CAS  Google Scholar 

  68. Luo Y, Wang X, He M, Li X, Chen H (2012) Synthesis of high-quality carbon nanotube arrays without the assistance of water. J Nanomater 2012:542582. https://doi.org/10.1155/2012/542582

    Article  CAS  Google Scholar 

  69. Homma Y, Liu H, Takagi D, Kobayashi Y (2009) Single-walled carbon nanotube growth with non-iron-group “catalysts” by chemical vapor deposition. Nano Res 2:793–799. https://doi.org/10.1007/s12274-009-9082-z

    Article  CAS  Google Scholar 

  70. Deck CP, Vecchio K (2006) Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon 44(2):267–275. https://doi.org/10.1016/j.carbon.2005.07.023

    Article  CAS  Google Scholar 

  71. Wang H, Sun W, Liu Y, Ma H, Li T, Lin KA, Yin K, Luo S (2022) Large-scale chemical vapor deposition synthesis of graphene nanoribbons/carbon nanotubes composite for enhanced membrane capacitive deionization. J Electroanal Chem 904:115907. https://doi.org/10.1016/j.jelechem.2021.115907

    Article  CAS  Google Scholar 

  72. Kang C-S, Ko Y-I, Fujisawa K, Yokokawa T, Kim JH, Han JH, Wee J-H, Kim YA, Muramatsu H, Hayashi T (2020) Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications. Carbon Lett 30:527–534. https://doi.org/10.1007/s42823-020-00122-4

    Article  Google Scholar 

  73. Gupta N, Gupta SM, Sharma SK (2019) Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett 29:419–447. https://doi.org/10.1007/s42823-019-00068-2

    Article  Google Scholar 

  74. Kim S, Gang IJ, Park YS, Han JH (2021) Facile tuning of carbon nanotube morphologies via residual carbon control during catalyst preparation stage. Carbon Lett 31:809–819. https://doi.org/10.1007/s42823-020-00213-2

    Article  Google Scholar 

  75. Vicentini R, Nunes W, Freitas BGA, Da Silva LM, Soares DM, Cesar R, Bodella CB, Zanin H (2019) Niobium pentoxide nanoparticles@ multi-walled carbon nanotubes and activated carbon composite material as electrodes for electrochemical capacitors. Energy Storage Mater 22:311–322. https://doi.org/10.1016/j.ensm.2019.08.007

    Article  Google Scholar 

  76. Real CG, Thaines EHNS, Pocrifka LA, Freitas RG, Singh G, Zanin H (2022) Freestanding niobium pentoxide-decorated multiwalled carbon nanotube electrode: Charge storage mechanism in sodium-ion pseudocapacitor and battery. J Energy Storage 52B:104793. https://doi.org/10.1016/j.est.2022.104793

    Article  Google Scholar 

  77. Chen C-M, Dai Y-M, Huang JG, Jehng J-M (2006) Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44(9):1808–1820. https://doi.org/10.1016/j.carbon.2005.12.043

    Article  CAS  Google Scholar 

  78. Jaim HMI, Hagopian JG (2022) Enhanced stray light suppression of short carbon nanotubes by using Platinum silicide catalyst enhancer in rapid thermal chemical vapor deposition process. Appl Surf Sci 579:152250. https://doi.org/10.1016/j.apsusc.2021.152250

    Article  CAS  Google Scholar 

  79. Tang H, Liu R, Huang W, Zhu W, Qian W, Dong C (2022) Field emission of multi-walled carbon nanotubes from pt-assisted chemical vapor deposition. Nanomaterials 12(3):575. https://doi.org/10.3390/nano12030575

    Article  CAS  Google Scholar 

  80. Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J-C (2001) Root-growth mechanism for single-wall carbon nanotubes. Phys Rev Lett 87:275504. https://doi.org/10.1103/PhysRevLett.87.275504

    Article  CAS  Google Scholar 

  81. Jiang J, Li N, Zou J, Zhou X, Eda G, Zhang Q, Zhang H, Li L-J, Zhai T, Wee ATS (2019) Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem Soc Rev 48:4639–4654. https://doi.org/10.1039/C9CS00348G

    Article  CAS  Google Scholar 

  82. Wang D, Li X-B, Sun H-B (2021) Modulation doping: a strategy for 2D materials electronics. Nano Lett 21(14):6298–6303. https://doi.org/10.1021/acs.nanolett.1c02192

    Article  CAS  Google Scholar 

  83. Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645. https://doi.org/10.1021/nl061797g

    Article  CAS  Google Scholar 

  84. Lv S, Wu Q, Xu Z, Yang T, Jiang K, He M (2022) Chirality distribution of single-walled carbon nanotubes grown from gold nanoparticles. Carbon 192:259–264. https://doi.org/10.1016/j.carbon.2022.02.051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Republic of Turkey Council of Higher Education 100/2000 Priority Areas Micro and Nanotechnology Doctorate Program, The Scientific and Technological Research Council of Turkey 2211-A program, and Dokuz Eylul University-Department of Scientific Research Projects with the ID of 2019.KB.FEN.032. The authors would like to thank Izmir Katip Çelebi University Central Research Laboratories Application and Research Center Fethullah Güneş Laboratory, Dokuz Eylul University Center for Fabrication and Application of Electronic Materials Mustafa Erol Laboratory, and Izmir Biomedicine Laboratory and Genome Center Defne Öztürk Laboratory for their valuable contributions and supports.

Author information

Authors and Affiliations

Authors

Contributions

HG: methodology, data curation, conceptualization, investigation, writing—review and editing, investigation, writing—original draft, and funding acquisition. MFE: supervision, conceptualization, review and editing.

Corresponding author

Correspondence to Hazal Gergeroglu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 90 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gergeroglu, H., Ebeoglugil, M.F. Investigation of the effect of catalyst type, concentration, and growth time on carbon nanotube morphology and structure. Carbon Lett. 32, 1729–1743 (2022). https://doi.org/10.1007/s42823-022-00381-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00381-3

Keywords

Navigation