Skip to main content

Advertisement

Log in

Facile synthesis of nitrogen-doped carbon dots (N-CDs) and N-CDs/NiO composite as an efficient electrocatalyst for oxygen evolution reaction

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon dots (N-CDs), derived from the biomass (anthocyanin), are the novel additive to the nanocarbon materials, which is expected to bring a wide spectrum of novel applications. Moreover, metallic oxides are emerging for their unique potential for electrocatalysis. Herein, we report the synthesis of N-CDs for the selective detection of Fe3+ with a limit of detection of 2.57 μM in the range of 5–60 μM using ethylenediamine and H2O2 by a hydrothermal method. The obtained N-CDs displayed a spherical morphology with a particle size range of 2–7 nm and emitted blue luminescence at 394 nm under excitation at 319 nm. Meanwhile, we have demonstrated the fabrication of cost-efficient electrocatalysts for oxygen evolution reaction (OER) in an alkaline medium, employing N-CDs. Owing to the successful incorporation of N-CDs into NiO nanospheres, the resulting N-CDs/NiO with large surface areas, fast charge transfer, and increased conductivity vastly improved the catalytic activity. Remarkably, the optimal of N-CDs/NiO composite requires the overpotential of only 380 mV at a current density of 10 mA cm−2 and a relatively low Tafel slope of 57.96 mV dec−1 compared with pure NiO. These results open up a facile route for the application of N-CDs and offer prospects for CD-metal hybrids as high OER catalysts in electrochemical energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirayama T (2019) Fluorescent probes for the detection of catalytic Fe(II) ion. Free Radical Biol Med 133:38–45

    Article  CAS  Google Scholar 

  2. Hirayama T, Kadota S, Niwa M, Nagasawa H (2018) A mitochondria-targeted fluorescent probe for selective detection of mitochondrial labile Fe(II). Metallomics 10:794–801

    Article  CAS  Google Scholar 

  3. Peng B, Shen Y, Gao Z, Zhou M, Ma Y, Zhao S (2015) Determination of total iron in water and foods by dispersive liquid-liquid micro extraction coupled with microvolume UV-vis spectrophotometry. Food Chem 176:288–293

    Article  CAS  Google Scholar 

  4. Yan F, Zou Y, Wang M, Mu X, Yang N, Chen L (2014) Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensor Actuat B Chem 192:488–495

    Article  CAS  Google Scholar 

  5. Xu YL, Niu XY, Zhang HJ, Xu L, Zhao S, Chen H, Chen X (2015) Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J Agric Food Chem 63:1747–1755

    Article  CAS  Google Scholar 

  6. Alex AM, Kiran MD, Hari G, Krishnan A, Jayan JS, Saritha A (2020) Carbon dots: a green synthesis from Lawsonia inermis leaves. Mater Today 26:716–719

    Google Scholar 

  7. Bao T, Song L, Zhang S (2018) Synthesis of carbon quantum dot-doped NiCoP and enhanced electrocatalytic hydrogen evolution ability and mechanism. Chem Eng J 351:189–194

    Article  CAS  Google Scholar 

  8. Wang H, Yin H, Zhou Y, Meng X, Waterhouse GIN, Ai S (2019) A novel photoelectrochemical biosensor for the sensitive detection of dual microRNAs using molybdenum carbide nanotubes as nanocarriers and energy transfer between CQDs and AuNPs. Chem Eng J 365:351–357

    Article  CAS  Google Scholar 

  9. Liu X, Wang T, Zhou Z, Yan Y (2019) A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. J Ind Eng Chem 72:100–106

    Article  CAS  Google Scholar 

  10. Choi J, Kim N, Oh JW, Kim FS (2018) Bandgap engineering of nanosized carbon dots through electron-accepting functionalization. J Ind Eng Chem 65:104–111

    Article  CAS  Google Scholar 

  11. Myint AA, Rhim WK, Nam JM, Kim J, Lee YW (2018) Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. J Ind Eng Chem 66:387–395

    Article  CAS  Google Scholar 

  12. Zhong D, Miao H, Yang KC, Yang X (2016) Carbon dots originated from carnation for fluorescent and colorimetric pH sensing. Mater Lett 166:89–92

    Article  CAS  Google Scholar 

  13. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109

    Article  CAS  Google Scholar 

  14. Fernandes M, Maria D, Suneesh KS, Daniel S (2019) Green synthesis of nitrogen and sulphur doped carbon dot composites for the sensing of glucose. Mater Today 9:54–60

    Google Scholar 

  15. Han J, Na K (2019) Transfection of the TRAIL gene into human mesenchymal stem cells using biocompatible polyethyleneimine carbon dots for cancer gene therapy. J Ind Eng Chem 80:722–728

    Article  CAS  Google Scholar 

  16. Atchudan R, Edison TNJI, Perumal S, Muthuchamy N, Lee YR (2020) Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel 275:117821

    Article  CAS  Google Scholar 

  17. Liang Y, Xu L, Tang K, Guan Y, Wang T, Wang H, Yu WW (2020) Nitrogen-doped carbon dots used as an “on–off–on” fluorescent sensor for Fe3+ and glutathione detection. Dyes Pigm 178:108358

    Article  CAS  Google Scholar 

  18. Aslandaş AM, Balcı N, Arık M, Şakiroğlu H, Onganer Y, Meral K (2015) Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection. Appl Surface Sci 356:747–752

    Article  Google Scholar 

  19. Zhang A, Li X, He Y (2016) Platinum/nitrogen-doped carbon nanoparticles synthesized in nitrogen-doped carbon quantum dots aqueous solution for methanol electro-oxidation. Electrochim Acta 213:332–340

    Article  CAS  Google Scholar 

  20. Yan M, Hua Y, Zhu F, Sun GuW, Shi W (2017) Constructing nitrogen doped graphene quantum dots-ZnNb2O6/g-C3N4 catalysts for hydrogen production under visible light. Appl Catal B 206:531–537

    Article  CAS  Google Scholar 

  21. Sim Y, Kim SJ, Janani G, Chae Y, Surendran S, Kim H, Yoo S, Seok DC, Jung YH, Jeon C, Moon J, Sim U (2020) The synergistic effect of nitrogen and fluorine Co-doping in graphene quantum dot catalysts for full water splitting and supercapacitor. Appl Surf Sci 507:145157

    Article  CAS  Google Scholar 

  22. Naqvi STR, Rasheed T, Majeed S, Rani Z, Nawaz R, Ashiq MN (2020) Development of nitrogen doped carbon dots modified CuCo alloy nanoparticles for potential electrocatalytic water splitting. J Mol Liq 309:113111

    Article  CAS  Google Scholar 

  23. Tian J, Chen J, Liu J, Tian Q, Chen P (2018) Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy 48:284–291

    Article  CAS  Google Scholar 

  24. Zhao S, Li C, Liu J, Liu N, Qiao S, Han Y, Huang H, Liu Y, Kang Z (2015) Carbon quantum dots/SnO2-Co3O4 composite for highly efficient electrochemical water oxidation. Carbon 92:64–73

    Article  CAS  Google Scholar 

  25. Li J, Zhang X, Zhang Z, Li Z, Gao M, Wei H, Chu H (2019) Graphene-Quantum-Dots-induced facile growth of porous molybdenum doped Ni3S2 nanoflakes as efficient bifunctional electrocatalyst for overall water splitting. Electrochim Acta 304:487–494

    Article  CAS  Google Scholar 

  26. Tian L, Li Z, Wang J, Wang K, Wo H, Wang X, Zhuang W, Li T, Du X (2019) Carbon-quantum-dots-embedded MnO2 nanoflower as an efficient electrocatalyst for oxygen evolution in alkaline media. Carbon 143:457–466

    Article  CAS  Google Scholar 

  27. Muthurasu A, Mers SVS, Ganesh V (2018) Nitrogen doped graphene quantum dots (N-GQDs)/Co3O4 composite material as an efficient bi-functional electrocatalyst for oxygen evolution and oxygen reduction reactions. Int J Hydrogen Energy 43(9):4726–4737

    Article  CAS  Google Scholar 

  28. Narwade SS, Mali SM, Digraskar RV, Sapner VS, Sathe BR (2019) Ni/NiO@rGO as an efficient bifunctional electrocatalyst for enhanced overall water splitting reactions. Int J Hydrogen Energy 44(49):27001–27119

    Article  CAS  Google Scholar 

  29. Babar PT, Lokhande AC, Gang MG, Pawar BS, Pawar SM, Kim JH (2018) Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application. J Ind Eng Chem 60(25):493–497

    Article  CAS  Google Scholar 

  30. Dong Y, Yang J, Liu Y, Wang Y, Dong Z, Cui M, Li M, Yuan X, Zhang X, Dai X (2020) 2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction. Dalton Trans 49(19):6355–6362

    Article  CAS  Google Scholar 

  31. Roy A, Ray A, Saha S, Ghosh M, Das T, Satpati B, Nandi M, Das S (2018) NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim Acta 283:327–337

    Article  CAS  Google Scholar 

  32. Wu H, Wang Y, Zheng C, Zhu J, Wu G, Li X (2016) Multi-shelled NiO hollow spheres: easy hydrothermal synthesis and lithium storage performances. J Alloy Compd 685:8–14

    Article  CAS  Google Scholar 

  33. Chaudhary P, Ingole PP (2020) In-Situ solid-state synthesis of 2D/2D interface between Ni/NiO hexagonal nanosheets supported on g-C3N4 for enhanced photo-electrochemical water splitting. Int J Hydrogen Energy 45(32):16060–16070

    Article  CAS  Google Scholar 

  34. Kannan K, Radhika D, Nikolova MP, Sadasivuni KK, Mahdizadeh H, Verma U (2020) Structural studies of bio-Mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun 113:107755

    Article  CAS  Google Scholar 

  35. Silva D, Simoes TA, Grilo JPF, Medeiros ES, Macedo DA (2020) Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. J Mater Sci 55(15):6648–6659

    Article  CAS  Google Scholar 

  36. Khan NA, Rashid N, Junaid M, Zafar MN, Faheem M, Ahmad I (2019) NiO/NiS heterostructures: an efficient and stable electrocatalyst for oxygen evolution reaction. ACS Appl Energy Mater 2:3587–3594

    Article  CAS  Google Scholar 

  37. Dang VD, Ganganboina AB, Doong R (2020) Bipyridine and copper functionalized N-doped carbon dots for fluorescence turn off-on detection of ciprofloxacin. ACS Appl Mater Interfaces 12(29):32247–32258

    Article  CAS  Google Scholar 

  38. Chen W, Ju J, Zhang R, He S (2014) Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv 4:52583–52589

    Article  Google Scholar 

  39. Chan W, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L (2014) Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149:237–244

    Article  Google Scholar 

  40. Chandra S, Pradhan DBP, Singh VK, Yadav PK, Sinha D, Hasan SH (2020) Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem 412:3753–3763

    Article  CAS  Google Scholar 

  41. Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y (2014) Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron 60:292–298

    Article  CAS  Google Scholar 

  42. Hu S, Liu J, Yang J, Wang Y (2011) Laser synthesis and size tailor of carbon quantum dots. J Nanoparticle Res 13(12):7247–7252

    Article  CAS  Google Scholar 

  43. He X, Han Y, Luo X, Yang W, Li C, Tang W, Yue T, Li Z (2020) Terbium (III)-referenced N-doped carbon dots for ratiometric fluorescent sensing of mercury (II) in seafood. Food Chem 320:126624

    Article  CAS  Google Scholar 

  44. Hoang VC, Dinh KN, Gomes VG (2020) Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: a sustainable bifunctional electrocatalyst for efficient water splitting. Carbon 157:515–524

    Article  CAS  Google Scholar 

  45. Jiang B, Liang Y, Yu X, Yuan G, Zheng M, Xiao Y, Dong H, Liu Y, Hu H (2020) Facile synthesis of FeCO3/nitrogen-doped carbon dot composites for lithium-ion battery anodes. J Alloy Compd 838:155508

    Article  CAS  Google Scholar 

  46. Xie A, Xie J, Tao X, Zhang J, Wei B, Peng W, Tao Y, Luo S (2019) Nickel-based MOF derived Ni@NiO/NeC nanowires with core-shell structure for oxygen evolution reaction. Electrochimical Acta 324:134814

    Article  CAS  Google Scholar 

  47. Elizabeth I, Nair AK, Singh BP, Gopukumar S (2017) Multifunctional Ni-NiO-CNT composite as high performing free standing anode for Li ion batteries and advanced electro catalyst for oxygen evolution reaction. Electrochim Acta 230:98–105

    Article  CAS  Google Scholar 

  48. Zhang J, Cui F, Xu L, Ma Q, Gao Y, Liu Y, Cui T (2020) Construction of magnetic NiO/C nanosheets derived from coordination polymers for extraordinary adsorption of dyes. J Colloid Interface Sci 561:542–550

    Article  CAS  Google Scholar 

  49. Lee C, Pant B, Kim BS, Jang RS, Park S, Park M, Park SJ, Kim HY (2017) Carbon quantum dots incorporated keratin/polyvinyl alcohol hydrogels: Preparation and photoluminescent assessment. Mater Lett 207:57–61

    Article  CAS  Google Scholar 

  50. Choi J, Kim N, Oh JW, Kim FS (2018) Bandgap engineering of nanosized carbon dots through electron-accepting functionalization. J Ind Eng Chem 65:104–111

    Article  CAS  Google Scholar 

  51. Khataee A, Sajjadi S, Hasanzadeh A, Joo SW (2019) Synthesis of magnetically reusable Fe3O4 nanospheres-N, S co-doped graphene quantum dots enclosed CdSe its application as a photocatalyst. J Ind Eng Chem 69:455–463

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (51703192), the 2020 Annual “Thirteenth Five Year” Planning Project of the Education Department of Jilin Province (JJKH20200515KJ), and the Innovation Team Project of Yanbian University (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Yue Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, X., Xin, X., Zhang, Y. et al. Facile synthesis of nitrogen-doped carbon dots (N-CDs) and N-CDs/NiO composite as an efficient electrocatalyst for oxygen evolution reaction. Carbon Lett. 31, 695–706 (2021). https://doi.org/10.1007/s42823-021-00255-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00255-0

Keywords

Navigation