Skip to main content

Advertisement

Log in

Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxygen evolution reaction (OER) is still a barrier to energy generation technologies, motivating the development of new strategies to the rational use of electrodes for OER. This work reports the effect of the morphology of nickel oxide (NiO) nanostructures on their catalytic activity toward OER in alkaline medium. 1D hollow nanofibers (NiO-NFBs) synthesized by solution blow spinning are compared with 3D nanoparticles (NiO-NPTs) synthesized by a well-known citrate method. The intrinsic activity of the electrocatalysts was evaluated by linear sweep voltammetry (LSV), electrochemically active surface area (ECSA), turnover frequency (TOF), and electrochemical impedance spectroscopy (EIS). Results confirm the superiority of NiO-NFBs, with a remarkable difference of 133 mV versus RHE to generate j = 10 mA cm−2. The NiO-NFBs showed a TOF value 122 times higher than NiO-NPTs. The Tafel analysis and EIS revealed that the hollow structure favors kinetics through a more efficient process of mass and charge transfer. Overall, results corroborate the thesis that the morphology imposes the main rule on the electrocatalyst performance. The morphology of NiO-NFBs is fully preserved after the electrolysis test, while NiO-NPTs degrade through a nanoparticle coalescence mechanism. This work is a contribution to the state of the art of nanostructured NiO-based electrodes for OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fabbri E, Schmidt TJ (2018) Oxygen evolution reaction—the enigma in water electrolysis. ACS Catal 8:9765–9774. https://doi.org/10.1021/acscatal.8b02712

    Article  CAS  Google Scholar 

  2. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM (2017) Energy and fuels from electrochemical interfaces. Nat Mater 16:57–69. https://doi.org/10.1038/nmat4738

    Article  CAS  Google Scholar 

  3. Tahir M, Pan L, Idrees F et al (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157. https://doi.org/10.1016/j.nanoen.2017.05.022

    Article  CAS  Google Scholar 

  4. Sapountzi FM, Gracia JM, Weststrate CJ, Kees J et al (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35. https://doi.org/10.1016/j.pecs.2016.09.001

    Article  Google Scholar 

  5. Fabbri E, Habereder A, Waltar K et al (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821. https://doi.org/10.1039/C4CY00669K

    Article  CAS  Google Scholar 

  6. Suen N-T, Hung S-F, Quan Q et al (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365. https://doi.org/10.1039/C6CS00328A

    Article  CAS  Google Scholar 

  7. Li X, Hao X, Abudula A, Guan G (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4:11973–12000. https://doi.org/10.1039/C6TA02334G

    Article  CAS  Google Scholar 

  8. Song F, Bai L, Moysiadou A et al (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140:7748–7759. https://doi.org/10.1021/jacs.8b04546

    Article  CAS  Google Scholar 

  9. Melchionna M, Fornasiero P, Cargnello M (2017) Opportunities and challenges in the synthesis, characterization, and catalytic properties of controlled nanostructures. Studies in Surface Science and Catalysis, 1st edn. Elsevier B.V., Amsterdam, pp 1–56

    Google Scholar 

  10. Byzynski G, Melo C, Volanti DP et al (2017) The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Mater Des 120:363–375. https://doi.org/10.1016/j.matdes.2017.02.020

    Article  CAS  Google Scholar 

  11. Bezemer GL, Bitter JH, Kuipers HPCE et al (2006) Cobalt particle size effects in the fischer—tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964. https://doi.org/10.1021/ja058282w

    Article  CAS  Google Scholar 

  12. Choi SK, Kim S, Lim SK, Park H (2010) Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J Phys Chem C 114:16475–16480. https://doi.org/10.1021/jp104317x

    Article  CAS  Google Scholar 

  13. Roy C, Sebok B, Scott SB et al (2018) Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat Catal 1:820–829. https://doi.org/10.1038/s41929-018-0162-x

    Article  CAS  Google Scholar 

  14. Meier JC, Galeano C, Katsounaros I et al (2014) Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 5:44–67. https://doi.org/10.3762/bjnano.5.5

    Article  CAS  Google Scholar 

  15. Mamme MH, Deconinck J, Ustarroz J (2017) Transition between kinetic and diffusion control during the initial stages of electrochemical growth using numerical modelling. Electrochim Acta 258:662–668. https://doi.org/10.1016/j.electacta.2017.11.111

    Article  CAS  Google Scholar 

  16. Li J, Zheng G (2017) One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv Sci 4:1600380. https://doi.org/10.1002/advs.201600380

    Article  CAS  Google Scholar 

  17. Silva VD, Simões TA, Loureiro FJA et al (2019) Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen evolution reaction electrocatalyst. Int J Hydrogen Energy 44:14877–14888. https://doi.org/10.1016/j.ijhydene.2019.04.073

    Article  CAS  Google Scholar 

  18. Silva VD, Ferreira LS, Simões TA et al (2019) 1D hollow MFe2O4 (M = Cu Co, Ni) fibers by Solution Blow Spinning for oxygen evolution reaction. J Colloid Interface Sci 540:59–65. https://doi.org/10.1016/j.jcis.2019.01.003

    Article  CAS  Google Scholar 

  19. Dou S, Wang X, Wang S (2018) Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 3:1800211. https://doi.org/10.1002/smtd.201800211

    Article  CAS  Google Scholar 

  20. Osgood H, Devaguptapu SV, Xu H et al (2016) Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11:601–625. https://doi.org/10.1016/j.nantod.2016.09.001

    Article  CAS  Google Scholar 

  21. Kumar JP, Giri SD, Sarkar A (2018) Mesoporous NiO with different morphology: synthesis, characterization and their evaluation for oxygen evolution reaction. Int J Hydrogen Energy 43:15639–15649. https://doi.org/10.1016/j.ijhydene.2018.06.097

    Article  CAS  Google Scholar 

  22. Liang J, Wang Y-Z, Wang C-C, Lu S-Y (2016) In situ formation of NiO on Ni foam prepared with a novel leaven dough method as an outstanding electrocatalyst for oxygen evolution reactions. J Mater Chem A 4:9797–9806. https://doi.org/10.1039/C6TA03729A

    Article  CAS  Google Scholar 

  23. Nardi KL, Yang N, Dickens CF et al (2015) Creating highly active atomic layer deposited NiO electrocatalysts for the oxygen evolution reaction. Adv Energy Mater 5:1500412. https://doi.org/10.1002/aenm.201500412

    Article  CAS  Google Scholar 

  24. Andersen NI, Serov A, Atanassov P (2015) Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media. Appl Catal B Environ 163:623–627. https://doi.org/10.1016/j.apcatb.2014.08.033

    Article  CAS  Google Scholar 

  25. Medeiros ES, Glenn GM, Klamczynski AP et al (2009) Solution Blow Spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 113:2322–2330. https://doi.org/10.1002/app.30275

    Article  CAS  Google Scholar 

  26. Silva RM, Raimundo RA, Fernandes WV et al (2018) Proteic sol–gel synthesis, structure and magnetic properties of Ni/NiO core-shell powders. Ceram Int 44:6152–6156. https://doi.org/10.1016/j.ceramint.2017.12.248

    Article  CAS  Google Scholar 

  27. Silva VD, Simões TA, Loureiro FJA et al (2018) Electrochemical assessment of Ca3Co4O9 nanofibres obtained by Solution Blow Spinning. Mater Lett 221:81–84. https://doi.org/10.1016/j.matlet.2018.03.088

    Article  CAS  Google Scholar 

  28. Lu X, Zhao C (2015) Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun 6:6616. https://doi.org/10.1038/ncomms7616

    Article  CAS  Google Scholar 

  29. Biesinger MC, Payne BP, Lau LWM et al (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41:324–332. https://doi.org/10.1002/sia.3026

    Article  CAS  Google Scholar 

  30. Prieto G, Tüysüz H, Duyckaerts N et al (2016) Hollow Nano- and Microstructures as catalysts. Chem Rev 116:14056–14119. https://doi.org/10.1021/acs.chemrev.6b00374

    Article  CAS  Google Scholar 

  31. Vij V, Sultan S, Harzandi AM et al (2017) Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal 7:7196–7225. https://doi.org/10.1021/acscatal.7b01800

    Article  CAS  Google Scholar 

  32. Juodkazis K, Juodkazytė J, Vilkauskaitė R, Jasulaitienė V (2008) Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J Solid State Electrochem 12:1469–1479. https://doi.org/10.1007/s10008-007-0484-0

    Article  CAS  Google Scholar 

  33. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:1–21. https://doi.org/10.1038/srep13801

    Article  Google Scholar 

  34. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  Google Scholar 

  35. Sun H, Xu X, Yan Z et al (2017) Porous multishelled Ni2P hollow microspheres as an active electrocatalyst for hydrogen and oxygen evolution. Chem Mater 29:8539–8547. https://doi.org/10.1021/acs.chemmater.7b03627

    Article  CAS  Google Scholar 

  36. Raimundo RA, Silva VD, Medeiros ES et al (2020) Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: structure, magnetic properties and OER activity. J Phys Chem Solids 139:109325. https://doi.org/10.1016/j.jpcs.2019.109325

    Article  CAS  Google Scholar 

  37. Li G, Chuang PYA (2018) Identifying the forefront of electrocatalytic oxygen evolution reaction: electronic double layer. Appl Catal B Environ 239:425–432. https://doi.org/10.1016/j.apcatb.2018.08.037

    Article  CAS  Google Scholar 

  38. Swierk JR, Klaus S, Trotochaud L et al (2015) electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (Oxy)hydroxide catalysts. J Phys Chem C 119:19022–19029. https://doi.org/10.1021/acs.jpcc.5b05861

    Article  CAS  Google Scholar 

  39. Xu W, Haarberg GM, Sunde S et al (2017) Calcination temperature dependent catalytic activity and stability of IrO2–Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes. J Electrochem Soc 164:F895–F900. https://doi.org/10.1149/2.0061710jes

    Article  CAS  Google Scholar 

  40. Park JY, Kim SS (2009) Growth of nanograins in electrospun ZnO nanofibers. J Am Ceram Soc 92:1691–1694. https://doi.org/10.1111/j.1551-2916.2009.03119.x

    Article  CAS  Google Scholar 

  41. Ustarroz J, Hammons JA, Altantzis T et al (2013) A generalized electrochemical aggregative growth mechanism. J Am Chem Soc 135:11550–11561. https://doi.org/10.1021/ja402598k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vinícius D. Silva and Thiago. A. Simões thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) for the doctoral and post-doctoral grants. Daniel A. Macedo thanks CNPq (Brazil, 311883/2016-8 and 431428/2018-2) for the financial support. The authors thank Prof. Rubens Maribondo do Nascimento (UFRN) and Prof. Sandro Marden Torres (UFPB) for FESEM and XRD analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinícius D. Silva, Eliton S. Medeiros or Daniel A. Macedo.

Ethics declarations

Conflict of interest

The authors declare that this research is not for profit sector, and there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, V.D., Simões, T.A., Grilo, J.P.F. et al. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. J Mater Sci 55, 6648–6659 (2020). https://doi.org/10.1007/s10853-020-04481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04481-1

Navigation