Skip to main content
Log in

Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We report potentiometric performances of ion-to-electron transducer based on reduced graphene oxide (RGO) for application of all-solid-state potassium ion sensors. A large surface area and pore structure of RGO are obtained by a hydrothermal self-assembly of graphene oxide. The extensive electrochemical characterization of RGO solid contact at the interface of ion-selective membrane and gold electrode shows that the potassium ion-selective electrode based on RGO had a high sensitivity (53.34 mV/log[K+]), a low detection of limit (− 4.24 log[K+], 0.06 mM) a good potential stability, and a high resistance to light and gas interferences. The potentiometric K+-sensor device was fabricated by combining of screen-printed electrodes and a printed circuit board. The K+-sensor device accurately measures the ion concentration of real samples of commercial sports drinks, coke and orange juice, and then transfers the collected data to a mobile application through a Bluetooth module. The screen-printed ion sensors based on RGO solid contact show a great potential for real-time monitoring and point-of-care devices in human health care, water-treatment process, and environmental and chemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu J, Stein A, Bühlmann P (2016) Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal Chem 76:102–144. https://doi.org/10.1016/j.trac.2015.11.004

    Article  CAS  Google Scholar 

  2. Yang Y, Gao W (2018) Wearable and flexible electronics for continuous molecular monitoring. Soc Rev, Chem. https://doi.org/10.1039/c7cs00730b

    Book  Google Scholar 

  3. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien D, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514. https://doi.org/10.1038/nature16521

    Article  CAS  Google Scholar 

  4. Parrilla M, Cánovas R, Jeerapan I, Andrade FJ, Wang J (2016) A textile-based stretchable multi-ion potentiometric sensor. Adv Healthc Mater 5:996–1001. https://doi.org/10.1002/adhm.201600092

    Article  CAS  Google Scholar 

  5. Emaminejad S, Gao W, Wu E, Davies ZA, Nyein HYY, Challa S, Ryan SP, Fahad HM, Chen K, Shahpar Z, Talebi S, Milla C, Javey A, Davis RW (2017) Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci USA 114:4625–4630. https://doi.org/10.1073/pnas.1701740114

    Article  CAS  Google Scholar 

  6. Hu J, Stein A, Bühlmann P (2016) A disposable planar paper-based potentiometric ion-sensing platform. Angew Chem Int Ed 55:7544–7547. https://doi.org/10.1002/anie.201603017

    Article  CAS  Google Scholar 

  7. Ruecha N, Chailapakul O, Suzuki K, Citterio D (2017) Fully inkjet-printed paper-based potentiometric ion-sensing devices. Anal Chem 89:10608–10616. https://doi.org/10.1021/acs.analchem.7b03177

    Article  CAS  Google Scholar 

  8. He Q, Das SR, Garland NT, Jing D, Hondred JA, Cargill AA, Ding S, Karunakaran C, Claussen JC (2017) Enabling inkjet printed graphene for ion selective electrodes with postprint thermal annealing. ACS Appl Mater Interfaces 9:12719–12727. https://doi.org/10.1021/acsami.7b00092

    Article  CAS  Google Scholar 

  9. van de Velde L, d’Angermont E, Olthuis W (2016) Solid contact potassium selective electrodes for biomedical applications—a review. Talanta 160:56–65. https://doi.org/10.1016/j.talanta.2016.06.050

    Article  CAS  Google Scholar 

  10. Yu K, He N, Kumar N, Wang N, Bobacka J, Ivaska A (2017) Electrosynthesized polypyrrole/zeolite composites as solid contact in potassium ion-selective electrode. Electrochim Acta 228:66–75. https://doi.org/10.1016/j.electacta.2017.01.009

    Article  CAS  Google Scholar 

  11. Veder J, De Marco R, Patel K, Si P, Grygolowicz-Pawlak E, James M, Alam MT, Sohail M, Lee J, Pretsch E, Bakker E (2013) Evidence for a surface confined ion-to-electron transduction reaction in solid-contact ion-selective electrodes based on poly(3-octylthiophene). Anal Chem 85:10495–10502. https://doi.org/10.1021/ac4024999

    Article  CAS  Google Scholar 

  12. Boeva ZA, Lindfors T (2016) Few-layer graphene and polyaniline composite as ion-to-electron transducer in silicone rubber solid-contact ion-selective electrodes. Sens Actuators B 224:624–631. https://doi.org/10.1016/j.snb.2015.10.054

    Article  CAS  Google Scholar 

  13. Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316–1322. https://doi.org/10.1021/ac071156l

    Article  CAS  Google Scholar 

  14. Fouskaki M, Chaniotakis N (2008) Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst 133:1072–1075. https://doi.org/10.1039/B719759D

    Article  CAS  Google Scholar 

  15. Hernández R, Riu J, Bobacka J, Vallés C, Jiménez P, Benito AM, Maser WK, Rius FX (2012) Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes. J Phys Chem C 116:22570–22578. https://doi.org/10.1021/jp306234u

    Article  CAS  Google Scholar 

  16. Ping J, Wang Y, Ying Y, Wu J (2012) Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal Chem 84:3473–3479. https://doi.org/10.1021/ac203480z

    Article  CAS  Google Scholar 

  17. Hu J, Zou XU, Stein A, Bühlmann P (2014) Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Anal Chem 86:7111–7118. https://doi.org/10.1021/ac501633r

    Article  CAS  Google Scholar 

  18. Fierke MA, Lai CZ, Bühlmann P, Stein A (2010) Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes. Anal Chem 82:680–688. https://doi.org/10.1021/ac902222n

    Article  CAS  Google Scholar 

  19. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  20. Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  21. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115. https://doi.org/10.1002/adma.201003753

    Article  CAS  Google Scholar 

  22. Bariya M, Shahpar Z, Park H, Sun J, Jung Y, Gao W, Nyein HYY, Liaw TS, Tai L, Ngo QP, Chao M, Zhao Y, Hettick M, Cho G, Javey A (2018) Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12:6978–6987. https://doi.org/10.1021/acsnano.8b02505

    Article  CAS  Google Scholar 

  23. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  24. Jeon H, Jeong J, Kang HG, Kim H, Park J, Kim DH, Jung YM, Hwang SY, Han Y, Choi BG (2018) Scalable water-based production of highly conductive 2D nanosheets with ultrahigh volumetric capacitance and rate capability. Adv Energy Mater 8:1800227. https://doi.org/10.1002/aenm.201800227

    Article  CAS  Google Scholar 

  25. Lindinger MI, Sjøgaard G (1991) Potassium regulation during exercise and recovery. Sports Med 11:382–401. https://doi.org/10.2165/00007256-199111060-00004

    Article  CAS  Google Scholar 

  26. Maccá C (2003) The current usage of selectivity coefficients for the characterization of ion-selective electrodes. A critical survey of the 2000/2001 literature. Electroanalysis 15:997–1010. https://doi.org/10.1002/elan.200390129

    Article  Google Scholar 

  27. Hong SB, Jeong J, Kang HG, Seo D, Cha Y, Jeon H, Lee GY, Irshad M, Kim DH, Hwang SY, Kim JW, Choi BG (2018) Fast and scalable hydrodynamic synthesis of MnO2/defect-free graphene nanocomposites with high rate capability and long cycle life. ACS Appl Mater Interfaces 10:35250–35259. https://doi.org/10.1021/acsami.8b12894

    Article  CAS  Google Scholar 

  28. Fibbioli M, Morf WE, Badertscher M, De Rooij NF, Pretsch E (2000) Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12:1286–1292. https://doi.org/10.1002/1521-4109(200011)12:16%3c1286:AID-ELAN1286%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  29. Bakker E, Bühlmann P, Pretsch E (2004) The phase-boundary potential model. Talanta 63:3–20. https://doi.org/10.1016/j.talanta.2003.10.006

    Article  CAS  Google Scholar 

  30. Vázquez M, Bobacka J, Ivaska A, Lewenstam A (2002) Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sens Actuators B 82:7–13. https://doi.org/10.1016/S0925-4005(01)00983-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) and funded by the Korean government (MSIP) (Nos. 2015M3A9D7067457, 2018R1C1B3001553).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoung G. Lee or Bong Gill Choi.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J.H., Park, H.J., Park, S.H. et al. Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors. Carbon Lett. 30, 73–80 (2020). https://doi.org/10.1007/s42823-019-00072-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00072-6

Keywords

Navigation