Skip to main content
Log in

A new sensor based on an amino-montmorillonite-modified inkjet-printed graphene electrode for the voltammetric determination of gentisic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s−1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 μM (R2 = 0.999), and a low detection limit of 0.33 μM (0.051 ± 0.01 mg L−1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

References

  1. Levy G, Tsuchiya T (1972) Salicylate accumulation kinetics in man. New Engl J Med 287:430–432. https://doi.org/10.1056/NEJM197208312870903

    Article  CAS  PubMed  Google Scholar 

  2. Cavalcante FML, Almeida IV, Dusman E, Mantovani MS, Vicentini VEP (2018) Cytotoxicity, mutagenicity, and antimutagenicity of the gentisic acid on HTC cells. Drug Chem Toxicol 41(2):155–161. https://doi.org/10.1080/01480545.2017.1322606

    Article  CAS  PubMed  Google Scholar 

  3. Ashidate K, Kawamura M, Mimura D, Tohda H, Miyazaki S, Teramoto T, Yamamoto Y, Hirata Y (2005) Gentisic acid, an aspirin metabolite, inhibits oxidation of low-density lipoprotein and the formation of cholesterol ester hydroperoxides in human plasma. Eur J Pharmacol 513(3):173–179. https://doi.org/10.1016/j.ejphar.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  4. Farshad A, Bibi MR, Hossein H (2020) A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: comprehensive pharmacology, toxicology, and some pharmaceutical aspects (2020). Phytother Res 34(4):729–741. https://doi.org/10.1002/ptr.6573

    Article  CAS  Google Scholar 

  5. Rosenberg EF, Krevsky DA, Kagan BM (1952) Laboratory and clinical experience with sodium gentisate in rheumatic disease. Ann Intern Med 36(6):1513–1519. https://doi.org/10.7326/0003-4819-36-6-1513

    Article  CAS  PubMed  Google Scholar 

  6. Altinoz MA, Elmaci I, Ozpinar A (2018) Gentisic acid, a quinonoid aspirin metabolite in cancer prevention and treatment - new horizons in management of brain tumors and systemic cancers. J Cancer Res Oncobiol 1(2):109–127. https://doi.org/10.31021/jcro.20181109

    Article  Google Scholar 

  7. Ting AY, Kaushalya SD, Barry L, Zayed H, Sanjeewa G (2018) Development and validation of high performance liquid chromatographic method for determination of gentisic acid and related renal cell carcinoma biomarkers in urine. Microchem J 137:85–89. https://doi.org/10.1016/j.microc.2017.09.024

    Article  CAS  Google Scholar 

  8. Kaushalya SD, Sanjeewa G, Undugodage DNP, Barry KL (2020) Analysis of gentisic acid and related renal cell carcinoma biomarkers using reversed-phase liquid chromatography with water-rich mobile phases. J Liq Chromatogr Relat Technol 42:681–687. https://doi.org/10.1080/10826076.2019.1666275

    Article  CAS  Google Scholar 

  9. Chen S, Burton C, Kaczmarek A, Shi H, Ma Y (2015) Simultaneous determination of urinary quinolinate, gentisate, 4-Hydroxybenzoate, and a-ketoglutarate by high-performance liquid chromatography-tandem mass spectrometry. Anal Methods 7:6572–6578. https://doi.org/10.1039/C5AY01643F

    Article  CAS  Google Scholar 

  10. Jose A, Murillo P, Aurelia AM (1994) Matrix isopotential synchronous fluorescence direct determination of gentisic acid in urine. Anal Chim Acta 296:87–97. https://doi.org/10.1016/0003-2670(94)85153-0

    Article  Google Scholar 

  11. Sandra Z, Xin Z, Jonathan S, Wolfgang T (2001) Determination of salicylate, gentisic acid and salicyluric acid in human urine by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B 752:17–31. https://doi.org/10.1016/S0378-4347(00)00507-7

    Article  Google Scholar 

  12. Pedano ML, Rivas GA (2000) Amperometric biosensor for the quantification of gentisic acid using polyphenol oxidase modified carbon paste electrode. Talanta 53:489–495. https://doi.org/10.1016/S0039-9140(00)00515-4

    Article  CAS  PubMed  Google Scholar 

  13. Lesch A, Salazar FC, Bassetto VC, Amstutz V, Girault HH (2015) Inkjet printing meets electrochemical energy conversion. Chimia 69:284–289. https://doi.org/10.2533/chimia.2015.284

    Article  CAS  PubMed  Google Scholar 

  14. Moya A, Gabriel G, Villa R, del Campo FJ (2017) Inkjet-printed electrochemical sensors. Sens Biosens 3:29–39. https://doi.org/10.1016/j.coelec.2017.05.003

    Article  CAS  Google Scholar 

  15. Dong S, Wang Z, Asif M, Wang H, Yu Y, Hu Y, Liu H, Xiao F (2017) Inkjet printing synthesis of sandwiched structured ionic liquid-carbon nanotube-graphene film: toward disposable electrode for sensitive heavy metal detection in environmental water samples. Ind Eng Chem Res 56:1696–1703. https://doi.org/10.1021/acs.iecr.6b04251

    Article  CAS  Google Scholar 

  16. Lesch A, Salazar FC, Prudent M, Delobel J, Rastgar S, Lion N, Tissot JD, Tacchini P, Girault HH (2014) Large scale inkjet-printing of carbon nanotubes electrodes for antioxidant assays in blood bags. J Electroanal Chem 717-718:61–68. https://doi.org/10.1016/j.jelechem.2013.12.027

    Article  CAS  Google Scholar 

  17. Romana J, Sandra EM, Margaret G, Milica J, Hubert HG, Andreas L, Michael M, Christopher W, Greg MS (2019) Inkjet-printed carbon nanotube electrodes for measuring pyocyanin and uric acid in a wound fluid simulant and culture media. Anal Chem 91:8835–8844. https://doi.org/10.1021/acs.analchem.8b05591

    Article  CAS  Google Scholar 

  18. Dalibor MS, Milica J, Milos O, Andreas L, Martin F, Hubert HG, Bratislav A (2019) Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres. Microchim Acta 186:532–539. https://doi.org/10.1007/s00604-019-3644-x

    Article  CAS  Google Scholar 

  19. Dalibor MS, Milos O, Milica J, Valentina C, Andreas L, Hubert HG, Marija GJ, Bratislav A (2019) Disposable biosensor based on amidase/CeO2/GNR modified inkjet-printed CNT electrodes-droplet based paracetamol detection in biological fluids for “point-of-care” applications. Electroanalysis 31:1–10. https://doi.org/10.1002/elan.201900129

    Article  CAS  Google Scholar 

  20. Milos O, Dalibor MS, Milica J, Milena K, Andreas L, Hubert HG, Bratislav VA (2020) Inkjet-printed carbon nanotube electrodes modified with dimercaptosuccinic acid-capped Fe3O4 nanoparticles on reduced graphene oxide nanosheets for single-drop determination of trifluoperazine. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.0c00661

  21. Tonle IK, Ngameni E, Tchieno FMM, Walcarius A (2015) Organoclay-modified electrodes: preparation, characterization and recent electroanalytical applications. J Solid State Electrochem 19:1949–1973. https://doi.org/10.1007/s10008-014-2728-0

    Article  CAS  Google Scholar 

  22. Ymele E, Jiokeng ZSL, Bup-Nde D, Kamgaing T, Tonle IK (2019) Simultaneous voltammetric determination of Cd2+, Pb2+ and Hg2+ ions using aminosepiolite coated glassy carbon electrode: optimization of detection parameters via response surface methodology. J Anal Testing 3:295–305. https://doi.org/10.1007/s41664-019-00086-z

    Article  Google Scholar 

  23. Jiokeng ZSL, Dongmo ML, Ymele E, Ngameni E, Tonle IK (2017) Sensitive stripping voltammetry detection of Pb(II) at a glassy carbon electrode modified with an amino-functionalized attapulgite. Sensors Actuators B Chem 242:1027–1034. https://doi.org/10.1016/j.snb.2016.09.150

    Article  CAS  Google Scholar 

  24. Tonle KI, Ngameni E, Walcarius A (2005) Preconcentration and voltammetric analysis of mercury(II) at a carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sensors Actuators B Chem 110:195–203. https://doi.org/10.1016/j.snb.2005.01.027

    Article  CAS  Google Scholar 

  25. Ngassa PGB, Tonle IK, Walcarius A, Ngameni E (2014) One-step co-intercalation of cetyltrimethylammonium and thiourea in smectite and application of the organoclay to the sensitive electrochemical detection of Pb(II). Appl Clay Sci 99:297–305. https://doi.org/10.1016/j.clay.2014.07.014

    Article  CAS  Google Scholar 

  26. Jiokeng ZSL, Tonle IK, Walcarius A (2019) Amino-attapulgite/mesoporous silica composite films generated by electro-assisted self-assembly for the voltammetric determination of diclofenac. Sensors Actuators B Chem 287:296–305. https://doi.org/10.1016/j.snb.2019.02.038

    Article  CAS  Google Scholar 

  27. Tcheumi HL, Tassontio NV, Tonle IK, Ngameni E (2019) Surface functionalization of smectite-type clay by facile polymerization of β-cyclodextrin using citric acid cross-linker: application as sensing material for the electrochemical determination of paraquat. Appl Clay Sci 173:97–106. https://doi.org/10.1016/j.clay.2019.03.013

    Article  CAS  Google Scholar 

  28. Tchieno MMF, Guenang SL, Ymele E, Ngameni E, Tonle IK (2017) Electroanalytical application of amine-grafted attapulgite to the sensitive quantification of the bioactive compound mangiferin. Electroanalysis 29(2):529–537. https://doi.org/10.1002/elan.201600381

    Article  CAS  Google Scholar 

  29. Ngassa PGB, Tonle KI, Ngameni E (2016) Square wave voltammetric detection by direct electroreduction of paranitrophenol (PNP) using an organosmectite film-modified glassy carbon electrode. Talanta 147:547–555. https://doi.org/10.1016/j.talanta.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  30. Chipera SJ, Bish DL (2001) Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clay Clay Miner 49:398–409. https://doi.org/10.1346/CCMN.2001.0490507

    Article  CAS  Google Scholar 

  31. Dongmo ML, Jiokeng ZSL, Pecheu NC, Walcarius A, Tonle IK (2020) Amino-grafting of montmorillonite improved by acid activation and application to the electroanalysis of catechol. Appl Clay Sci 191:105602. https://doi.org/10.1016/j.clay.2020.105602

    Article  CAS  Google Scholar 

  32. Zhu BY, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  33. Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselav KS, Basko DM, Ferrari AC (2009) Raman spectroscopy of graphene edges. Nanoletter 9(4):1433–1441. https://doi.org/10.1021/nl8032697

    Article  CAS  Google Scholar 

  34. Li J, Ye F, Vaziri S, Muhammed M, Lemme MC, Ostling M (2012) A simple route towards high-concentration surfactant-free graphene dispersions. Carbon 50(8):3092–3116. https://doi.org/10.1016/j.carbon.2012.03.011

    Article  CAS  Google Scholar 

  35. Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D (2006) Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: experiments and modeling. Polymer 47(1):403–414. https://doi.org/10.1016/j.polymer.2005.11.055

    Article  CAS  Google Scholar 

  36. Amarasinghe PM, Katti KS, Katti DR (2008) Molecular hydraulic properties of montmorillonite: a polarized Fourier transformed infrared spectroscopic study. Appl Spectrosc 62(12):1303–1313 https://www.osapublishing.org/as/abstract.cfmURI=as-62-12-1303

    Article  CAS  PubMed  Google Scholar 

  37. Mendelovici E (1973) Infrared study of attapulgite and HC1 treated attapulgite. Clay Clay Miner 21:115–119. https://doi.org/10.1346/CCMN.1973.0210207

    Article  CAS  Google Scholar 

  38. Xue A, Zhou S, Zhao Y, Lu X, Han P (2011) Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes. J Hazard Mater 194:7–14. https://doi.org/10.1016/j.jhazmat.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  39. Shanmugharaj AM, Rhee KY, Ryu SH (2006) Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. J Colloid Interface Sci 298:854–859. https://doi.org/10.1016/j.jcis.2005.12.049

    Article  CAS  PubMed  Google Scholar 

  40. Shen W, He H, Zhu J, Yuan P, Frost RL (2007) Grafting of montmorillonite with different functional silanes via two different reaction systems. J Colloid Interface Sci 313:268–273. https://doi.org/10.1016/j.jcis.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  41. Shen W, He H, Zhu J, Yuan P, Ma Y, Liang X (2009) Preparation and characterization or 3-aminopropyltriethosysilane grafted montmorillonite and acid-activated montmorillonite. Chin Sci Bull 54:265–271. https://doi.org/10.1007/s11434-008-0361-y

    Article  CAS  Google Scholar 

  42. Daniel LM, Frost RL, Zhu HY (2008) Edge-modification of laponite with dimethyloctylmethoxysilane. J Colloid Interface Sci 321:302–309. https://doi.org/10.1016/j.jcis.2008.01.032

    Article  CAS  PubMed  Google Scholar 

  43. He HP, Duchet J, Galy J, Gerard J (2005) Grafting of swelling clay materials with 3- aminopropyltriethoxysilane. J Colloid Interface Sci 288:171–176. https://doi.org/10.1016/j.jcis.2005.02.092

    Article  CAS  PubMed  Google Scholar 

  44. Su LN, Qi T, Hongping H, Jianxi Z, Peng Y (2012) Locking effect: a novel insight in the silylation of montmorillonite surfaces. Mater Chem Phys 136(2–3):292–295. https://doi.org/10.1016/j.matchemphys.2012.07.010

    Article  CAS  Google Scholar 

  45. Celis R, Hermosin MC, Cornejo J (2000) Heavy metal adsorption by functionalized clays. Environ Sci Technol 34(21):4593–4599. https://doi.org/10.1021/es000013c

    Article  CAS  Google Scholar 

  46. Tonle KI, Ngameni E, Njopwouo D, Carteret C, Walcarius A (2003) Functionalization of natural smectite-type clays by grafting with organosilanes: physico-chemical characterization and application to mercury(II) uptake. Phys Chem Chem Phys 5:4951–4961. https://doi.org/10.1039/B308787E

    Article  CAS  Google Scholar 

  47. Mercier L, Pinnavaia TJ (1998) Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake. Environ Sci Technol 32:2749–2754. https://doi.org/10.1021/es970622t

    Article  CAS  Google Scholar 

  48. Walcarius A, Delacote C (2003) Rates of access to the binding sites in organically modified silicates. 3. Effect of structure and density of functional groups in mesoporous solids obtained by the cocondensation route. Chem Mater 15:4181–4192. https://doi.org/10.1021/cm031089l

    Article  CAS  Google Scholar 

  49. Tonle IK, Ngameni E, Walcarius A (2004) From clay to organoclay film modified electrodes: tuning charge selectivity in ion exchange voltammetry. Electrochim Acta 49:3435–3443. https://doi.org/10.1016/j.electacta.2004.03.012

    Article  CAS  Google Scholar 

  50. Shih Y, Zen JM, Kumar AS, Chen PY (2004) Flow injection analysis of zinc pyrithione in hair care products on a cobalt phthalocyanine modified screen-printed carbon electrode. Talanta 62(5):912–917. https://doi.org/10.1016/j.talanta.2003.10.039

    Article  CAS  PubMed  Google Scholar 

  51. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  52. Ghoneim MM, Hassanein AM, Hammam E, Beltagi AM (2000) Simultaneous determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe in water by differential pulse stripping voltammetry at a hanging mercury drop electrode. Fres nius J Anal Chem 367:378–383. https://doi.org/10.1007/s002160000410

    Article  CAS  Google Scholar 

  53. Stoj A, Szwajgier D, Baranowska-Wojcik E, Domagała D (2019) Gentisic acid, salicylic acid, total phenolic content and cholinesterase inhibitory activities of red wines made from various grape varieties. S Afr J Enol Vitic 40(1). https://doi.org/10.21548/40-1-2885

  54. van Lelyveld LJ, van Vuuren SP, Visser G (1988) Gentisic acid concentration in healthy and greening infected fruit albedo and leaves of citrus species and cultivars. S Afr J Plant Soil 5(4):209–211. https://doi.org/10.1080/02571862.1988.10634987

    Article  Google Scholar 

  55. Wendy RR, Aurelie L, Lorraine S, Gary JD, Garry GD (2009) Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chem 115:100–104. https://doi.org/10.1016/j.foodchem.2008.11.086

    Article  CAS  Google Scholar 

  56. George JS, Eleftherios PD, Alex K, David MG (1997) A multiresidue derivatization gas chromatographic assay for fifteen phenolic constituents with mass selective detection. Anal Chem 69:4405–4409. https://doi.org/10.1021/ac961320x

    Article  Google Scholar 

  57. Pirker R, Huck CW, Popp M, Bonn GK (2004) Simultaneous determination of gentisic, salicyluric and salicylic acid in human plasma using solid-phase extraction, liquid chromatography and electrospray ionization mass spectrometry. J Chromatogr B 809:257–264. https://doi.org/10.1016/j.jchromb.2004.06.031

    Article  CAS  Google Scholar 

  58. Li W, Matthew SH, Douglas HS (2013) Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography–tandem mass spectrometry. J Chromatogr B 937:91–96. https://doi.org/10.1016/j.jchromb.2013.08.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. S. Guenang thanks the Agence Universitaire de la Francophonie (France) for a travel grant.

Funding

This work was supported by the Alexander von Humboldt Foundation (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignas K. Tonlé.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongmo, L.M., Guenang, L.S., Jiokeng, S.L.Z. et al. A new sensor based on an amino-montmorillonite-modified inkjet-printed graphene electrode for the voltammetric determination of gentisic acid. Microchim Acta 188, 36 (2021). https://doi.org/10.1007/s00604-020-04651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04651-7

Keywords

Navigation