Skip to main content

Advertisement

Log in

Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible soybean cultivars

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Highly varied bacterial communities inhabiting the soybean rhizosphere perform important roles in its growth and production; nevertheless, little is known about the changes that occur in these communities under disease-stress conditions. The present study investigated the bacterial diversity and their metabolic profile in the rhizosphere of disease-resistant (JS-20–34) and disease-susceptible (JS-335) soybean (Glycine max (L.) Merr.) cultivars using 16S rRNA amplicon sequencing and community-level physiological profiling (CLPP). In disease-resistant soybean (AKADR) samples, the most dominating phyla were Actinobacteria (40%) followed by Chloroflexi (24%), Proteobacteria (20%), and Firmicutes (12%), while in the disease-susceptible (AKADS) sample, the most dominating phyla were Proteobacteria (35%) followed by Actinobacteria (27%) and Bacteroidetes (17%). Functional profiling of bacterial communities was done using the METAGENassist, and PICRUSt2 software, which shows that AKADR samples have more ammonifying, chitin degrading, nitrogen-fixing, and nitrite reducing bacteria compared to AKADS rhizosphere samples. The bacterial communities present in disease-resistant samples were significantly enriched with genes involved in nitrogen fixation, carbon fixation, ammonification, denitrification, and antibiotic production. Furthermore, the CLPP results show that carbohydrates and carboxylic acids were the most frequently utilized nutrients by the microbes. The principal component analysis (PCA) revealed that the AKADR soils had higher functional activity (strong association with the Shannon–Wiener index, richness index, and hydrocarbon consumption) than AKADS rhizospheric soils. Overall, our findings suggested that the rhizosphere of resistant varieties of soybean comprises of beneficial bacterial population over susceptible varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The sequence data of Illumina MiSeq Sequencer has been deposited at SRA under the bio project PRJNA589888 disease-resistant (SAMN13293567) and disease-susceptible (SAMN13293568).

References

  1. Kaushal M, Mahuku G, Swennen R (2020) Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants 9(2). https://doi.org/10.3390/plants9020263

  2. Ruzzi M, Aroca R, Lee S-WS-H et al (2016) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Commun Soil Sci Plant Anal. https://doi.org/10.1007/s10341-016-0278-6

  3. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  4. Sugiyama A (2019) The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J Adv Res. https://doi.org/10.1016/j.jare.2019.03.005

  5. Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O (2016) Effects of secondary plant metabolites on microbial populations: Changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci 17(8). https://doi.org/10.3390/ijms17081205

  6. Dubey A, Kumar A, Malla MA et al (2021) Approaches for the amelioration of adverse effects of drought stress on crop plants. Front Biosci - Landmark 26(10):928–947. https://doi.org/10.52586/4998

    Article  CAS  Google Scholar 

  7. Kumar A, Dubey A (2020) Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. J Adv Res 24:337–352. https://doi.org/10.1016/j.jare.2020.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubey A, Saiyam D, Kumar A, Hashem A, Abduallah EF, Khan ML (2021) Bacterial root endophytes: Characterization of their competence and plant growth promotion in soybean (glycine max (L.) merr.) under drought stress. Int J Environ Res Public Health 18(3):1–20. https://doi.org/10.3390/ijerph18030931

    Article  CAS  Google Scholar 

  9. Zhou D, Jing T, Chen Y et al (2019) Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol 19(1). https://doi.org/10.1186/s12866-019-1531-6

  10. Kwak M-J, Kong HG, Choi K et al (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36(11):1100–1109. https://doi.org/10.1038/nbt.4232

    Article  CAS  Google Scholar 

  11. Dubey A, Kumar A, Abd Allah EF, Hashem A, Khan ML (2019) Growing more with less: Breeding and developing drought resilient soybean to improve food security. Ecol Indic 105:425–437. https://doi.org/10.1016/j.ecolind.2018.03.003

    Article  CAS  Google Scholar 

  12. Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3(1):21. https://doi.org/10.1186/2191-0855-3-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Banaszkiewicz T (2011) Nutritional Value of Soybean Meal. In: Soybean and Nutrition. https://doi.org/10.5772/23306

  14. Miransari M (2016) Abiotic and Biotic Stresses in Soybean Production. https://doi.org/10.1016/c2014-0-00087-1

  15. Deshmukh R, Sonah H, Patil G, et al. (2014) Integrating omic approaches for abiotic stress tolerance in soybean. 5(June):1-12. https://doi.org/10.3389/fpls.2014.00244

  16. Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.) - Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45(2):146–152. https://doi.org/10.1016/j.ejsobi.2008.11.002

    Article  CAS  Google Scholar 

  17. Bandara AY, Weerasooriya DK, Bradley CA, Allen TW, Esker PD (2020) Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS On. https://doi.org/10.1371/journal.pone.0231141

  18. Chattopadhyay C, Kolte SJ, Waliyar F, Chattopadhyay C, Kolte SJ, Waliyar F (2015) Soybean Diseases. In: Diseases of Edible Oilseed Crops.. https://doi.org/10.1201/b19302-9

  19. Barpete RD, Verma VK (2019) Management of rhizoctonia root rot disease in soybean in Betul district of Madhya Pradesh. Plant Arch 19(2):2376–2378

    Google Scholar 

  20. Amrate PK, Shrivastava MK, Singh G (2020) Screening of genotypes to identify the resistance source against major diseases of soybean under high disease pressure conditions. Int J Curr Microbiol App Sci 9(5):1739–1745. https://doi.org/10.20546/ijcmas.2020.905.195

    Article  CAS  Google Scholar 

  21. Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd-Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.01132

  22. Fonseca JP, Hoffmann L, Cabral BCA et al (2018) Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve. Gene. 642:389–397. https://doi.org/10.1016/j.gene.2017.11.039

    Article  CAS  PubMed  Google Scholar 

  23. Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. https://doi.org/10.1038/ismej.2014.17

  24. Xu Y, Wang G, Jin J, Liu J, Zhang Q, Liu X (2009) Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2008.10.027

  25. Bulgarelli D, Garrido-Oter R, Münch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403. https://doi.org/10.1016/j.chom.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature. 488(7409):86–90. https://doi.org/10.1038/nature11237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. https://doi.org/10.1038/nature11336

  28. Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front. Plant Sci 5(MAY). https://doi.org/10.3389/fpls.2014.00216

  29. Knief C, Delmotte N, Chaffron S et al (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390. https://doi.org/10.1038/ismej.2011.192

    Article  CAS  PubMed  Google Scholar 

  30. Edwards J, Johnson C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112(8):E911–E920. https://doi.org/10.1073/pnas.1414592112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuźniar A, Włodarczyk K, Grządziel J, Goraj W, Gałązka A, Wolińska A (2020) Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Syst Appl Microbiol. https://doi.org/10.1016/j.syapm.2019.126025

  32. Chen S, Waghmode TR, Sun R, Kuramae EE, Hu C, Liu B (2019) Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome. Published online https://doi.org/10.1186/s40168-019-0750-2

  33. Solanki MK, Abdelfattah A, Britzi M et al (2019) Shifts in the composition of the microbiota of stored wheat grains in response to fumigation. Front Microbiol 10(MAY). https://doi.org/10.3389/fmicb.2019.01098

  34. Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J 2021;15(1):330-347. doi:https://doi.org/10.1038/s41396-020-00785-x

  35. Jin T, Wang Y, Huang Y et al (2017) Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience. 6(10):1–12. https://doi.org/10.1093/gigascience/gix089

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Wu L, Wu X et al (2017) Analysis of microbial diversity in soil under ginger cultivation. Scientifica (Cairo) 2017. https://doi.org/10.1155/2017/8256865

  37. Lazcano C, Boyd E, Holmes G, Hewavitharana S, Pasulka A, Ivors K (2021) The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci Rep. https://doi.org/10.1038/s41598-021-82768-2

  38. Kumar A, Dubey A, Malla MA, Dames J (2021) Pyrosequencing and phenotypic microarray to decipher bacterial community variation in Sorghum bicolor (L.) Moench rhizosphere. Curr Res Microb Sci. https://doi.org/10.1016/j.crmicr.2021.100025

  39. Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9(6):1–9. https://doi.org/10.1371/journal.pone.0100709

    Article  CAS  Google Scholar 

  40. Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science (80- ) 332(6033):1097–1100. https://doi.org/10.1126/science.1203980

    Article  CAS  Google Scholar 

  41. Mallon CA, Poly F, Le Roux X, Marring I, Van Elsas JD, Salles JF (2015) Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology 96(4):915–926. https://doi.org/10.1890/14-1001.1

    Article  PubMed  Google Scholar 

  42. Krishna SBN, Dubey A, Malla MA et al (2020) Integrating microbiome network: establishing linkages between plants, microbes and human health. Open Microbiol J. https://doi.org/10.2174/1874285801913020330

  43. Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd-Allah EF (2019) Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front Immunol 9(19):1–23. https://doi.org/10.3389/fimmu.2018.02868

    Article  CAS  Google Scholar 

  44. Malla MA, Dubey A, Raj A, Kumar A, Upadhyay N, Yadav S (2022) Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment. Environ Pollut 299(January):118851. https://doi.org/10.1016/j.envpol.2022.118851

    Article  CAS  PubMed  Google Scholar 

  45. Dubey A, Kumar A, Khan ML, Payasi DK (2022) Plant growth-promoting and bio-control activity of Micrococcus luteus strain AKAD 3-5 isolated from the soybean (Glycine max (L.) Merr.) rhizosphere. Open Microbiol J 15(1):188–197. https://doi.org/10.2174/1874285802115010188

    Article  Google Scholar 

  46. Dubey A, Malla MA, Khan F et al (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28(8-9):2405–2429. https://doi.org/10.1007/s10531-019-01760-5

    Article  Google Scholar 

  47. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570. https://doi.org/10.1007/s10529-010-0347-0

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Zhang R, Gao J, et al. (2017) Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem. Published online https://doi.org/10.1016/j.soilbio.2016.10.023

  49. Singh VK, Singh AK, Singh PP, Kumar A (2018) Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2018.08.020

  50. Angayarkanni T (2013) Biomanagement of root rot and leaf spot disease of stevia rebaudiana using plant growth promoting rhizobacteria. University.

  51. Kumawat KC, Sharma P, Sirari A et al (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2622-0

  52. Gałązka A, Grzęda E, Jończyk K (2019) Changes of microbial diversity in rhizosphere soils of new quality varieties of winter wheat cultivation in organic farming. Sustain. https://doi.org/10.3390/SU11154057

  53. Praeg N, Pauli H, Illmer P (2019) Microbial diversity in bulk and rhizosphere soil of ranunculus glacialis along a high-alpine altitudinal gradient. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01429

  54. Wolińska A, Kuźniar A, Zielenkiewicz U et al (2017) Metagenomic Analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes. Microb Ecol. https://doi.org/10.1007/s00248-016-0837-2

  55. Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  56. Subbiah BV, Asija GL (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25(8):259–260

    CAS  Google Scholar 

  57. Dickman SR, Bray RH (1940) Colorimetric determination of phosphate. Ind Eng Chem Anal Ed. https://doi.org/10.1021/ac50151a013

  58. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59(1):39–46. https://doi.org/10.1097/00010694-194501000-00006

    Article  CAS  Google Scholar 

  59. Frac M, Oszust K, Lipiec J (2012) Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors. 12(3):3253–3268. https://doi.org/10.3390/s120303253

    Article  PubMed  PubMed Central  Google Scholar 

  60. Siles JA, Cajthaml T, Minerbi S, Margesin R (2016) Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol 92(3). https://doi.org/10.1093/femsec/fiw008

  61. Sala MM, Arrieta JM, Boras JA, Duarte CM, Vaqué D (2010) The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol 33(12):1683–1694. https://doi.org/10.1007/s00300-010-0808-x

    Article  Google Scholar 

  62. Suda W, Nagasaki A, Shishido M (2009) Powdery mildew-infection changes bacterial community composition in the phyllosphere. Microbes Environ. Published online https://doi.org/10.1264/jsme2.ME09114

  63. ter Braak CJF. Canoco for visualization of multivariate data. 2014;(January):1-10. http://www.wageningenur.nl/en/show/Canoco-for-visualization-of-multivariate-data.htm

  64. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilke A, Glass EM, Bischof J, et al. (2015) MG-RAST Manual for version 3.6, revision 3. :130.

  66. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11(1):485. https://doi.org/10.1186/1471-2105-11-485

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(Database issue):D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  68. Arndt D, Xia J, Liu Y et al (2012) METAGENassist: A comprehensive web server for comparative metagenomics. Nucleic Acids Res 40(W1). https://doi.org/10.1093/nar/gks497

  69. Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6):685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  71. Wolinska A, Kuzniar A, Galazka A (2020) Biodiversity in the Rhizosphere of selected winter wheat (Triticum aestivum L.) cultivars-genetic and catabolic fingerprinting. Agronomy. https://doi.org/10.3390/agronomy10070953

  72. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57(8):2351–2359

    Article  CAS  Google Scholar 

  73. Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol. https://doi.org/10.1016/S0168-6496(97)00061-5

  74. Mendes LW, de Chaves MG, Fonseca M de C, Mendes R, Raaijmakers JM, Tsai SM. Resistance Breeding of Common Bean Shapes the Physiology of the Rhizosphere Microbiome. Front Microbiol 2019. doi:https://doi.org/10.3389/fmicb.2019.02252

  75. Natividad AA, Timoneda J, Batlle-Sales J, Bordas V, Murgui A (1997) New Method for MEaduring Dehydrogenase Activity in Soils

  76. Wolińska A, Kuźniar A, Zielenkiewicz U et al (2017) Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.06.009

  77. Corwin DL, Lesch SM (2003) Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron J 95:455–471. https://doi.org/10.2134/agronj2003.4550

    Article  Google Scholar 

  78. Sanches GM, Magalhães PSG, Remacre AZ, Franco HCJ. Potential of apparent soil electrical conductivity to describe the soil pH and improve lime application in a clayey soil. Soil Tillage Res 2018;175:217-225. doi:https://doi.org/https://doi.org/10.1016/j.still.2017.09.010

  79. (2021) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. In: Phosphate in soils. https://doi.org/10.1201/9781351228909-9

  80. Si P, Shao W, Yu H et al (2018) Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in northern China. Front Microbiol. https://doi.org/10.3389/fmicb.2018.03147

  81. Amin DH, Abdallah NA, Abolmaaty A, Tolba S, Wellington EMH (2020) Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective. Bull Natl Res Cent. https://doi.org/10.1186/s42269-019-0266-8

  82. Zhou Z, Wang C, Luo Y (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun 11(1):3072. https://doi.org/10.1038/s41467-020-16881-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17(3):610–621. https://doi.org/10.1111/1462-2920.12452

    Article  PubMed  Google Scholar 

  84. Rascovan N, Carbonetto B, Perrig D et al (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep. https://doi.org/10.1038/srep28084

  85. Gałązka A, Gawryjołek K, Grządziel J, Frąc M, Księżak J (2017) Microbial community diversity and the interaction of soil under maize growth in different cultivation techniques. Plant Soil Environ. https://doi.org/10.17221/171/2017-PSE

  86. Grządziel J, Gałązka A (2018) Microplot long-term experiment reveals strong soil type influence on bacteria composition and its functional diversity. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.10.033

  87. Robben C, Fister S, Witte AK, Schoder D, Rossmanith P, Mester P (2018) Induction of the viable but non-culturable state in bacterial pathogens by household cleaners and inorganic salts. Sci Rep. https://doi.org/10.1038/s41598-018-33595-5

  88. Thijs S, De Beeck MO, Beckers B, et al. (2017) Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front Microbiol. Published online https://doi.org/10.3389/fmicb.2017.00494

  89. Chen L, Shi H, Heng J, Wang D, Bian K. Antimicrobial, plant growth-promoting and genomic properties of the Chen L, Shi H, Heng J, Wang D, Bian K. Antimicrobial, plant growth-promoting and genomic properties of the https://doi.org/10.1016/j.micres.2018.10.002

  90. Benitez MS, Osborne SL, Lehman RM (2017) Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-15955-9

  91. Alvarez A, Saez JM, Davila Costa JS et al (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere. 166:41–62. https://doi.org/10.1016/j.chemosphere.2016.09.070

    Article  CAS  PubMed  Google Scholar 

  92. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A (2017) Proteobacteria: A common factor in human diseases. Biomed Res Int. https://doi.org/10.1155/2017/9351507

  93. Hayat S, Ashraf A, Aslam B, et al. (2021) Actinobacteria: potential candidate as plant growth promoters. In: Hossain A, ed. Plant stress physiology. IntechOpen. https://doi.org/10.5772/intechopen.93272

  94. Kumar A, Kumar A, Devi S, Patil S, Payal C, Negi S (2012) Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res Sci Technol 4:01–05

    Google Scholar 

  95. Chakraborty U, Chakraborty BN, Chakraborty AP, Sunar K, Dey PL (2013) Plant growth promoting rhizobacteria mediated improvement of health status of tea plants. Indian J Biotechnol 12(1):20–31

    CAS  Google Scholar 

  96. Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170(2):283–287. https://doi.org/10.1002/jpln.200620602

    Article  CAS  Google Scholar 

  97. Hashem A, Abd Allah EF, Alqarawi AA, Radhakrishnan R, Kumar A (2017) Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mung bean. J Plant Interact 12(1):390–401. https://doi.org/10.1080/17429145.2017.1373871

    Article  CAS  Google Scholar 

  98. Gond SK, Bergen MS, Torres MS, White JF (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87. https://doi.org/10.1016/j.micres.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  99. Etchegaray A, De Castro Bueno C, De Melo IS et al (2008) Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol 190(6):611–622. https://doi.org/10.1007/s00203-008-0409-z

    Article  CAS  PubMed  Google Scholar 

  100. Zouari I, Jlaiel L, Tounsi S, Trigui M (2016) Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biol Control 100:54–62. https://doi.org/10.1016/j.biocontrol.2016.05.012

    Article  CAS  Google Scholar 

  101. Chitarra GS, Breeuwer P, Nout MJR, Van Aelst AC, Rombouts FM, Abee T (2003) An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J Appl Microbiol 94(2):159–166. https://doi.org/10.1046/j.1365-2672.2003.01819.x

    Article  CAS  PubMed  Google Scholar 

  102. Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108(2):386–395. https://doi.org/10.1111/j.1365-2672.2009.04438.x

    Article  CAS  PubMed  Google Scholar 

  103. Kumar S, Aharwal RP, Shukla H, Rajak RC, Sandhu SS (2014) Endophytic fungi : as a source of antimicrobials bioactive compounds. World J Pharm Pharm Sci 3(2):1179–1197

    Google Scholar 

  104. Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML (2020) Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol 40(8):1210–1231. https://doi.org/10.1080/07388551.2020.1808584

    Article  CAS  PubMed  Google Scholar 

  105. Lodha TD, Srinivas A, Sasikala C, Ramana CV (2015) Hopanoid inventory of Rhodoplanes spp. Arch Microbiol 197(6):861–867. https://doi.org/10.1007/s00203-015-1112-5

    Article  CAS  PubMed  Google Scholar 

  106. Hopwood D (2007) An introduction to the actinobacteria. Microbiol Today 34(2):60–62

    Google Scholar 

  107. Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González- Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic Gram-positive bacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00463

  108. Li X, Rui J, Xiong J et al (2014) Functional potential of soil microbial communities in the maize rhizosphere. PLoS One. https://doi.org/10.1371/journal.pone.0112609

  109. Yu K, Liu Y, Tichelaar R et al (2019) Rhizosphere-associated pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. Curr Biol. https://doi.org/10.1016/j.cub.2019.09.015

  110. Cook RJ, Thomashow LS, Weller DM et al (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.92.10.4197

Download references

Acknowledgements

The authors would like to thank Dr. Devendra Pyasi, Plant Breeder at Krishi Vigyan Kendra, Bamhori Seed Farm Bhopal Road, Sagar (M.P.), India, for his assistance in sample collection.

Funding

AD received grants through the DST Inspire PhD. Fellowship (IF160797) from the department of science and technology, New Delhi, India. AK gratefully acknowledge DST-SERB for financial support obtained through project grant of (CRG/2021/003696), New Delhi, Govt of India.

Author information

Authors and Affiliations

Authors

Contributions

AD conducted the experiments and prepared the manuscript. AD and MM performed the data analysis under the guidance and supervision of AK.

Corresponding author

Correspondence to Ashwani Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Acacio Aparecido Navarrete

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, A., Malla, M.A. & Kumar, A. Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible soybean cultivars. Braz J Microbiol 53, 1355–1370 (2022). https://doi.org/10.1007/s42770-022-00746-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00746-w

Keywords

Navigation