Skip to main content

Advertisement

Log in

Hopanoid inventory of Rhodoplanes spp.

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Hopanoids are pentacyclic triterpenoid lipids and are important for bacterial membrane stability and functioning. These pentacyclic triterpenoids of hopane series are biomarkers for eubacteria and can be used as chemotaxonomic markers. Anoxygenic phototrophic bacteria are good producers of hopanoids, and their inventory to date is restricted to a few members. Rhodoplanes spp. are phototrophic prokaryotes which grow and thrive in subsurface and sediment environments. A study on the diversity of hopanoids of several species of Rhodoplanes revealed a rich diversity of hopanoids with carbon length of C30/C31 and C35. Hop-22(29)-ene (II), diplopterol (V), tetrahymanol (VII), 2-methyldiplopterol (VI), 2-methyltetrahymanol (VIII), bacteriohopanetetrol (IX), bacteriohopaneaminotriol (X) and bacteriohopanepolyols [BHP-492 (XIII), BHP-550 (XIV), BHP-508 (XII)] are the major hopanoids of the genus Rhodoplanes. Tetrahymanol (VII) content is high (38–60 %) among all the members, except for Rhodoplanes elegans. Hopanoid fingerprints allowed differentiation of species of the genus Rhodoplanes. Statistical analyses also indicate hopanoids as good chemotaxonomic markers to distinguish species of the genus Rhodoplanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Blumenberg M, Kruger M, Nauhaus K, Talbot HM, Oppermann BI, Seifert R, Pape T, Michaelis W (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Blumenberg M, Oppermann BI, Guyoneaud R, Michaelis W (2009) Hopanoid production by Desulfovibrio bastinii isolated from oilfield formation water. FEMS Microbiol Lett 293:73–78

    Article  CAS  PubMed  Google Scholar 

  • Blumenberg M, Mollenhauer G, Zabel M, Reimer A, Thiel V (2010) Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS). Org Geochem 41:1119–1129

    Article  CAS  Google Scholar 

  • Garcia Costas AM, Tsukatani Y, Rijpstra WI, Schouten S, Welander PV, Summons RE, Bryant DA (2012) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartner T, Straub KL, Kannenberg E (2005) Occurrence of hopanoid lipids in anaerobic Geobacter species. FEMS Microbiol Lett 243:59–64

    Article  PubMed  Google Scholar 

  • Hermans MA, Neuss B, Sahm H (1991) Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J Bacteriol 173:5592–5595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiraishi A, Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44:665–673

    Article  Google Scholar 

  • Lakshmi KVNS, Sasikala C, Ramana C (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59:2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Neunlist S, Rohmer M (1985) A novel hopanoid, 30-(5′-adenosyl)hopane, from the purple non-sulphur bacterium Rhodopseudomonas acidophila, with possible DNA interactions. Biochem J 228:769–771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neunlist S, Holst O, Rohmer M (1985) Prokaryotic triterpenoids. The hopanoids of the purple non-sulphur bacterium Rhodomicrobium vannielii: an aminotriol and its aminoacyl derivatives, N-tryptophanyl and N-ornithinyl aminotriol. Eur J Biochem 147:561–568

    Article  CAS  PubMed  Google Scholar 

  • Neunlist S, Bisseret P, Rohmer M (1988) The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanetetrol. Eur J Biochem 171:245–252

    Article  CAS  PubMed  Google Scholar 

  • Ourisson G, Albrech P (1992) Hopanoids. 1. Geohopanoids: the most abundant natural products on earth? Acc Chem Res 25:398–402

    Article  CAS  Google Scholar 

  • Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol 41:301–333

    Article  CAS  PubMed  Google Scholar 

  • Ramana CV, Srinivas A, Subhash Y, Tushar L, Mukharjee T, Usha KP, Sasikala C (2012a) Salinicoccus halitifaciens sp. nov., a novel bacterium participating in halite formation. Antonie Van Leeuwenhoek 103:885–898

    Article  Google Scholar 

  • Ramana VV, Shalem RP, Tushar L, Sasikala C, Ramana CV (2012b) Rhodomicrobium udaipurense sp. nov., a psychrotolerant phototrophic alphaproteobacterium isolated from a fresh water stream. Int J Syst Evol Microbiol 63:2684–2689

    Article  Google Scholar 

  • Rohmer M, Bouvier-Navez P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:131–150

    Google Scholar 

  • Sessions AL, Zhang L, Welander PV, Doughty D, Summons RE, Newman DK (2013) Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography-mass spectrometry. Org Geochem 56:120–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivas A, Sasikala C, Ramana ChV (2014) Rhodoplanes oryzae sp. nov., a phototrophic alphaproteobacterium isolated from the rhizosphere soil of paddy. Int J Syst Evol Microbiol 64:2198–2203

    Article  CAS  PubMed  Google Scholar 

  • Subhash Y, Tushar L, Sasikala C, Ramana CV (2012) Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from a dry soil of a solar saltern. Int J Syst Evol Microbiol 63:2132–2137

    Article  PubMed  Google Scholar 

  • Subhash Y, Tushar L, Sasikala C, Ramana CV (2013a) Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from a dry soil of a solar saltern. Int J Syst Evol Microbiol 63:4524–4532

    Article  CAS  PubMed  Google Scholar 

  • Subhash Y, Tushar L, Sasikala C, Ramana CV (2013b) Mongoliicoccus alkaliphilus sp. nov. and Litoribacter alkaliphilus sp. nov. isolated from salt pans. Int J Syst Evol Microbiol 63:3457–3462

    Article  CAS  PubMed  Google Scholar 

  • Summons RE, Jahnke LJ, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  CAS  PubMed  Google Scholar 

  • Talbot HM, Rohmer M, Farrimond P (2007) Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 21:880–892

    Article  CAS  PubMed  Google Scholar 

  • Tank M, Bryant DA (2015) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol (In Press) doi:10.1099/ijs.0.000113

  • Tushar L, Sasikala C, Ramana ChV (2014) Draft genome sequence of Rhodomicrobium udaipurense JA643T with special reference to hopanoid biosynthesis. DNA Res 21:639–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnuvardhan SR, Aspana S, Tushar L, Sasikala C, Ramana CV (2013) Spirochaeta sphaeroplastigenens sp. nov., a novel halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar, India. Int J Syst Evol Microbiol 63:2223–2228

    Article  Google Scholar 

  • Welander PV, Maureen LC, Sessions AL, Summons RE, Newman DK (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc Natl Acad Sci USA 107:8537–8542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Council of Scientific and Industrial Research (CSIR). TL is supported by research fellowship from the University Grants Commission (UGC). SA is supported by research fellowship from the CSIR-SRF. Infrastructural facility support provided by DST as FIST is greatly acknowledged.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chintalapati Venkata Ramana.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodha, T.D., Srinivas, A., Sasikala, C. et al. Hopanoid inventory of Rhodoplanes spp.. Arch Microbiol 197, 861–867 (2015). https://doi.org/10.1007/s00203-015-1112-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1112-5

Keywords

Navigation