Skip to main content
Log in

Review of harmless treatment of municipal solid waste incineration fly ash

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2021

This article has been updated

Abstract

Incineration is widely adopted in municipal solid waste management, which produces large amounts of municipal solid waste incineration (MSWI) fly ash. The harmless treatment of MSWI fly ash requires the appropriate disposal of heavy metals and dioxins that are enriched in fly ash. This review summarizes recently developed harmless disposal methods for MSWI fly ash including solidification/stabilization, thermal treatment, and separation/extraction. In addition, we discuss heavy metal and dioxin fixation, and the removal capacity of fly ash via solidification/stabilization (including cement solidification, chemical stabilization, hydrothermal processes, and mechano-chemical methods), thermal treatment (including sintering, fuel-burning, or electric melting/vitrification), and separation/extraction (including water-washing, chemical reagent leaching, biological leaching, electrodialysis separation, chemical reagent extraction, and nanomaterials extraction). The advantages and disadvantages of different harmless treatment methods are compared and future research prospects and suggestions are summarized. This review provides general guidelines for the harmless treatment of MSWI fly ash in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Das S, Lee S, Kumar P, et al. Solid waste management: scope and the challenge of sustainability. J Clean Prod. 2019;228:658–78.

    Article  Google Scholar 

  2. Pujara Y, Pathak P, Sharma A, et al. Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. J Environ Manag. 2019;248:1–14.

    Article  Google Scholar 

  3. National Bureau of Statistics of China. 2017. https://data.stats.gov.cn/easyquery.htm?cn=C01. Accessed 20 Oct 2019.

  4. Madon I, Drev D, Likar J. Long-term risk assessments comparing environmental performance of different types of sanitary landfills. Waste Manag. 2019;96:96–107.

    Article  Google Scholar 

  5. Aracil C, Pedro H, Diego F, et al. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Waste Manag. 2018;76:443–56.

    Article  Google Scholar 

  6. Souza WDDM, Rodrigue WS, Filho MMSL, et al. Heavy metals uptake on Malpighia emarginata D.C. seed fiber microparticles: physicochemical characterization, modeling and application in landfill leachate. Waste Manag. 2018;78:356–65.

    Article  CAS  Google Scholar 

  7. Liu S, Xi B, Qiu Z, et al. Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals. Sci Total Environ. 2019;651:909–16.

    Article  CAS  Google Scholar 

  8. Kumar SS, Kumar V, Kumar R, et al. Ferrous sulfate as an in-situ anodic coagulant for enhanced bioelectricity generation and COD removal from landfill leachate. Energy. 2019;176:570–81.

    Article  CAS  Google Scholar 

  9. Fellner J, Lederer J, Purgar A, et al. Evaluation of resource recovery from waste incineration residues–the case of zinc. Waste Manag. 2015;37(3):95–103.

    Article  CAS  Google Scholar 

  10. Makarichi L, Jutidamrongphan W, Techato K. The evolution of waste-to-energy incineration: a review. Renew Sustain Energy Rev. 2018;91:812–21.

    Article  CAS  Google Scholar 

  11. Ettouney RS, El-Rifai MA, El-Behairy SA. Control of thermally integrated incineration–waste heat recovery systems, a case study. Appl Therm Eng. 2005;25(8):1195–205.

    Article  Google Scholar 

  12. Allegrini E, Vadenbo C, Boldrin A, et al. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. J Environ Manag. 2015;151:132–43.

    Article  CAS  Google Scholar 

  13. Song J, Sun Y, Jin L. PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renew Sustain Energy Rev. 2017;80:276–89.

    Article  Google Scholar 

  14. IAWG (International ash working group). Municipal solid waste incinerator residues. Stud Environ Sci. 1997;67–68.

  15. Boom AD, Degrez M. Belgian MSWI fly ashes and APC residues: a characterisation study. Waste Manag. 2012;32(6):1163–70.

    Article  CAS  Google Scholar 

  16. Tchounwou PB, Yedjou CG, Patlolla AK, et al. Molecular, clinical and environmental toxicology: heavy metal toxicity and the. Environment. 2012;3:133–64.

    Google Scholar 

  17. Fei J, Min X, Wang Z, et al. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China. Environ Sci Pollut Res. 2017;24(35):27573–86.

    Article  CAS  Google Scholar 

  18. Pan Y, Wu Z, Zhou J, et al. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J Hazard Mater. 2013;261(20):269–76.

    Article  CAS  Google Scholar 

  19. Milbrath MO, Wenger Y, Chang CW, et al. Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect. 2009;117(3):417–25.

    Article  CAS  Google Scholar 

  20. Sun J, Hu J, Zhu G, et al. PCDD/Fs distribution characteristics and health risk assessment in fly ash discharged from MSWIs in China. Ecotoxicol Environ Saf. 2017;139:83–8.

    Article  CAS  Google Scholar 

  21. Pan Y, Yang L, Zhou J, et al. Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere. 2013;92(7):765–71.

    Article  CAS  Google Scholar 

  22. Quina MJ, Bordado JC, Quinta-Ferreira RM. Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag. 2008;28(11):2097–121.

    Article  CAS  Google Scholar 

  23. Sakai E, Miyahara S, Ohsawa S, et al. Hydration of fly ash cement. Cem Concr Res. 2005;35(6):1135–40.

    Article  CAS  Google Scholar 

  24. Yu Q, Nagataki S, Lin J, et al. The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash. Cem Concr Res. 2005;35(6):1056–63.

    Article  CAS  Google Scholar 

  25. Li X, Chen Q, Zhou Y, et al. Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Manag. 2014;34(12):2494–504.

    Article  CAS  Google Scholar 

  26. Sun Y, Watanabe N, Qiao W, et al. Polysulfide as a novel chemical agent to solidify/stabilize lead in fly ash from municipal solid waste incineration. Chemosphere. 2010;81(1):120–6.

    Article  CAS  Google Scholar 

  27. Jiang J, Wang J, Xu X, et al. Heavy metal stabilization in municipal solid waste incineration flyash using heavy metal chelating agents. J Hazard Mater. 2004;113(1):141–6.

    Article  CAS  Google Scholar 

  28. Sukandar, Padmi T, Tanaka M et al. Chemical stabilization of medical waste fly ash using chelating agent and phosphates: heavy metals and ecotoxicity evaluation. Waste Manage. 2009;29(7):2065–70.

    Article  CAS  Google Scholar 

  29. Li R, Li Y, Yang T, et al. A new integrated evaluation method of heavy metals pollution control during melting and sintering of MSWI fly ash. J Hazard Mater. 2015;289:197–203.

    Article  CAS  Google Scholar 

  30. Sobiecka E. Thermal and physicochemical technologies used in hospital incineration fly ash utilization before landfill in Poland. J Chem Technol Biotechnol. 2016;91(9):2457–61.

    Article  CAS  Google Scholar 

  31. Wang X, Jin B, Xu B, et al. Melting characteristics during the vitrification of MSW incinerator fly ash by swirling melting treatment. J Mater Cycles Waste Manag. 2017;19(1):483–95.

    Article  Google Scholar 

  32. Ristić M, Milosević SD. Frenkel’s theory of sintering. Sci Sintering. 2006;38:7–11.

    Article  CAS  Google Scholar 

  33. Li R, Wang L, Yang T, et al. Investigation of MSWI fly ash melting characteristic by DSC–DTA. Waste Manag. 2007;27(10):1383–92.

    Article  CAS  Google Scholar 

  34. Wang Q, Tian S, Wang Q, et al. Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace. J Hazard Mater. 2008;160(2):376–81.

    Article  CAS  Google Scholar 

  35. Okada T, Suzuki M. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash. J Environ Manag. 2013;130:347–53.

    Article  CAS  Google Scholar 

  36. Wang Q, Yan J, Tu X, et al. Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel. 2009;88(5):955–8.

    Article  CAS  Google Scholar 

  37. Zhao P, Ni G, Jiang Y, et al. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. J Hazard Mater. 2010;181(1):580–5.

    Article  CAS  Google Scholar 

  38. Wang Q, Yan J, Chi Y, et al. Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere. 2010;78(5):626–30.

    Article  CAS  Google Scholar 

  39. Tang J, Petranikova M, Ekberg C, et al. Mixer-settler system for the recovery of copper and zinc from MSWI fly ash leachates: an evaluation of a hydrometallurgical process. J Clean Prod. 2017;148:595–605.

    Article  CAS  Google Scholar 

  40. Tang J, Steenari BM. Solvent extraction separation of copper and zinc from MSWI fly ash leachates. Waste Manag. 2015;44:147–54.

    Article  CAS  Google Scholar 

  41. Li M, Xiang J, Hu S, et al. Characterization of solid residues from municipal solid waste incinerator. Fuel. 2004;83(10):1397–405.

    Article  CAS  Google Scholar 

  42. Rendek E, Ducom G, Germain P. Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Manag. 2007;27(10):1403–7.

    Article  Google Scholar 

  43. Wang Y, Zhang X, Liao W, et al. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: a case study from Sichuan province. China. Waste Manage. 2018;77:252–67.

    Article  Google Scholar 

  44. Park K, Hyun J, Maken S, et al. Vitrification of municipal solid waste incinerator fly ash using brown’s gas. Energy Fuels. 2005;19(1):258–62.

    Article  CAS  Google Scholar 

  45. Qiu Q, Jiang X, Lv G, et al. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 2018;335:156–63.

    Article  CAS  Google Scholar 

  46. Mu Y, Saffarzadeh A, Shimaoka T. Influence of ignition of waste fishbone on enhancing heavy metal stabilization in municipal solid waste incineration (MSWI) fly ash. J Clean Prod. 2018;189:396–405.

    Article  CAS  Google Scholar 

  47. Huber F, Blasenbauer D, Mallow O, et al. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln. Waste Manag. 2016;58(58):181–90.

    Article  CAS  Google Scholar 

  48. Kalmykova Y, Karlfeldt FK. Phosphorus recovery from municipal solid waste incineration fly ash. Waste Manag. 2013;33(6):1403–10.

    Article  CAS  Google Scholar 

  49. Qiu Q, Jiang X, Chen Z, et al. Microwave-assisted hydrothermal treatment with soluble phosphate added for heavy metals solidification in MSWI fly ash. Energy Fuels. 2017;31(5):5222–32.

    Article  CAS  Google Scholar 

  50. Bhatt AH, Priyadarshini S, Mohanakrishnan AA, et al. Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater. 2019;11:1–11.

    CAS  Google Scholar 

  51. Shim YS, Rhee SW, Lee WK. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Waste Manag. 2005;25(5):473–80.

    Article  CAS  Google Scholar 

  52. Gao X, Wang W, Ye T, et al. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. J Environ Manag. 2008;88(2):293–9.

    Article  CAS  Google Scholar 

  53. Zhang H, Zhao Y, Qi J. Characterization of heavy metals in fly ash from municipal solid waste incinerators in Shanghai. Procces Saf Envrion. 2010;88(2):114–24.

    Article  CAS  Google Scholar 

  54. Wang KS, Chiang KY, Lin KL, et al. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy. 2001;62(2):73–81.

    Article  CAS  Google Scholar 

  55. Wan X, Wang W, Ye T, et al. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. J Hazard Mater. 2006;134(1):197–201.

    Article  CAS  Google Scholar 

  56. Li Q, Meng A, Jia J, et al. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration. J Environ Sci China. 2010;22(5):760–8.

    Article  CAS  Google Scholar 

  57. Kurashima K, Matsuda K, Kumagai S, et al. A combined kinetic and thermodynamic approach for interpreting the complex interactions during chloride volatilization of heavy metals in municipal solid waste fly ash. Waste Manag. 2019;87:204–17.

    Article  CAS  Google Scholar 

  58. Weibel G, Eggenberger U, Kulik D, et al. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Manag. 2018;76:457–71.

    Article  CAS  Google Scholar 

  59. Xia Y, He P, Shao L, et al. Metal distribution characteristic of MSWI bottom ash in view of metal recovery. J Environ Sci China. 2017;52(2):178–89.

    Article  CAS  Google Scholar 

  60. Luo H, Wu Y, Zhao A, et al. Hydrothermally synthesized porous materials from municipal solid waste incineration bottom ash and their interfacial interactions with chloroaromatic compounds. J Cleaner Prod. 2017;162:411–9.

    Article  CAS  Google Scholar 

  61. Mizutani S, Yoshida T, Sakai S, et al. Release of metals from MSW I fly ash and availability in alkali condition. Waste Manag. 1996;16:537–44.

    Article  CAS  Google Scholar 

  62. Tang J, Steenari B. Leaching optimization of municipal solid waste incineration ash for resource recovery: a case study of Cu. Zn Pb and Cd. Waste Manag. 2016;48(48):315–22.

    Article  CAS  Google Scholar 

  63. Zhang Y, Cetin B, Likos WJ, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel. 2016;184:815–25.

    Article  CAS  Google Scholar 

  64. Trinh MM, Chang MB. Review on occurrence and behavior of PCDD/Fs and dl-PCBs in atmosphere of East Asia. Atmos Environ. 2018;180:23–36.

    Article  CAS  Google Scholar 

  65. Cieplik MK, Vincent DJ, Jelena B, et al. Formation of dioxins from combustion micropollutants over MSWI fly ash. Environ Sci Technol. 2006;40(4):1263–9.

    Article  CAS  Google Scholar 

  66. Tang Z, Huang Q, Yang Y. PCDD/Fs in fly ash from waste incineration in china: a need for effective risk management. Environ Sci Technol. 2013;47(11):5520–1.

    Article  CAS  Google Scholar 

  67. Song S, Zhou X, Guo C, et al. Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China. Ecotoxicol Environ Saf. 2019;184:109608.

    Article  CAS  Google Scholar 

  68. Barghi M, Choi S, Kwon H, et al. Influence of non-detect data-handling on toxic equivalency quantities of PCDD/Fs and dioxin-like PCBs: a case study of major fish species purchased in Korea. Environ Pollut. 2016;214:532–8.

    Article  CAS  Google Scholar 

  69. Liu Y, Liu Y. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification. Environ Sci Technol. 2005;39(10):3855–63.

    Article  CAS  Google Scholar 

  70. Song GJ, Kim SH, Seo YC, et al. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment. Chemosphere. 2008;71(2):248–57.

    Article  CAS  Google Scholar 

  71. Chang Y, Fan W, Dai W, et al. Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators. J Hazard Mater. 2011;192(2):521–9.

    Article  CAS  Google Scholar 

  72. Yasuhara AT. Katami Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator. Waste Manag. 2007;27(3):439–47.

    Article  CAS  Google Scholar 

  73. Lundin L, Marklund S. Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash. Chemosphere. 2007;67(3):474–81.

    Article  CAS  Google Scholar 

  74. Liu G, Jiang X, Wang M, et al. Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. Chemosphere. 2015;133(1):68–74.

    Article  CAS  Google Scholar 

  75. Ham SY, KimYJ Lee DH. Leaching characteristics of PCDDs/DFs and dioxin-like PCBs from landfills containing municipal solid waste and incineration residues. Chemosphere. 2008;70(9):1685–93.

    Article  CAS  Google Scholar 

  76. Choi K, Lee D. PCDD/DF in leachates from Korean MSW landfills. Chemosphere. 2006;63(8):1353–60.

    Article  CAS  Google Scholar 

  77. Spence R. Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes. Crit Rev Environ Sci Technol. 2004;34(4):391–417.

    Article  CAS  Google Scholar 

  78. Koo D, Sung H, Kim S, et al. Characteristics of cement solidification of metal hydroxide waste. Nucl Eng Technol. 2017;49(1):165–71.

    Article  Google Scholar 

  79. Zhang R, Ren HQ, Ding LL, et al. Evaluating solidification characteristics of textile dyeing sludge with addition of portland cement and attapulgite. Appl Mech Mater. 2015;768:375–84.

    Article  Google Scholar 

  80. Bayar S, Talinli I. Solidification/stabilization of hazardous waste sludge obtained from a chemical industry. Clean Technol Environ Policy. 2013;15(1):157–65.

    Article  CAS  Google Scholar 

  81. Wang Z, Song Y. Adsorption properties of CFBC ash-cement pastes as compared with PCC fly ash-cement pastes. Int J Coal Sci Technol. 2016;3(1):62–7.

    Article  CAS  Google Scholar 

  82. Petersen T, Valdenaire P, Pellenq R, et al. A reaction model for cement solidification: evolving the C–S–H packing density at the micrometer-scale. J Mech Phys Solids. 2018;118:58–73.

    Article  CAS  Google Scholar 

  83. Nabajyoti S, Shigeru K, Toshinori K. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag. 2007;27(9):1178–89.

    Article  CAS  Google Scholar 

  84. Saeed KA, Kassim KA, Eisazadeh A. Interferences of cement based-solidification/stabilization and heavy metals: A review. Electron J Geotech Eng. 2012;17:2555–65.

    CAS  Google Scholar 

  85. Zhang J, Liu J, Li C, et al. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization. J Hazard Mater. 2009;165(1):1179–85.

    Article  CAS  Google Scholar 

  86. Valls S, Vàzquez E. Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems. Waste Manag. 2002;22(1):37–45.

    Article  CAS  Google Scholar 

  87. Conner JR, Hoeffner SL. A critical review of stabilization/solidification technology. Crit Rev Environ Control. 1998;28(4):397–462.

    Article  CAS  Google Scholar 

  88. Lu H, Wei F, Tang J, et al. Leaching of metals from cement under simulated environmental conditions. J Environ Manag. 2016;169:319–27.

    Article  CAS  Google Scholar 

  89. Li W, Sun Y, Huang Y, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash. Waste Manag. 2019;87:407–16.

    Article  CAS  Google Scholar 

  90. Gerven TV, Baelen DV, Dutré V, et al. Influence of carbonation and carbonation methods on leaching of metals from mortars. Cem Concr Res. 2004;34(1):149–56.

    Article  CAS  Google Scholar 

  91. Zha X, Ning J, Saafi M, et al. Effect of supercritical carbonation on the strength and heavy metal retention of cement-solidified fly ash. Cem Concr Res. 2019;120:36–45.

    Article  CAS  Google Scholar 

  92. Zha X, Wang H, Xie P, et al. Leaching resistance of hazardous waste cement solidification after accelerated carbonation. Cem Concr Compos. 2016;72:125–32.

    Article  CAS  Google Scholar 

  93. Wen D, Zhang CY, Kong XM, et al. Mercury release from fly ashes and hydrated fly ash cement pastes. Atmos Environ. 2018;178:11–8.

    Article  CAS  Google Scholar 

  94. His H, Wang L, Yu T. Effects of injected activated carbon and solidification treatment on the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans from air pollution control residues of municipal waste incineration. Chemosphere. 2007;67(7):1394–402.

    Article  CAS  Google Scholar 

  95. Hsi HC, Yu TH. Evaluation of the leachability of polychlorinated dibenzo–dioxins and dibenzofurans in raw and solidified air pollution control residues from municipal waste incinerators. Chemosphere. 2007;67(7):1434–43.

    Article  CAS  Google Scholar 

  96. Wang MS, Wang LC, Chang-Chien GP. Distribution of polychlorinated dibenzo- p -dioxins and dibenzofurans in the landfill site for solidified monoliths of fly ash. J Hazard Mater. 2006;133(1):177–82.

    Article  CAS  Google Scholar 

  97. Yang Z, Tian S, Liu L, et al. Application of washed MSWI fly ash in cement composites: long-term environmental impacts. Environ Sci Pollut Res. 2018;25(12):12127–38.

    Article  CAS  Google Scholar 

  98. Bie R, Pei C, Song X, et al. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J Energy Inst. 2016;89(4):704–12.

    Article  CAS  Google Scholar 

  99. Colangelo F, Cioffi R, Montagnaro F, et al. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Manag. 2012;32(6):1179–85.

    Article  CAS  Google Scholar 

  100. Ding Z, Dong B, Xing F, et al. Cementing mechanism of potassium phosphate based magnesium phosphate cement. Ceram Int. 2012;38(8):6281–8.

    Article  CAS  Google Scholar 

  101. Su Y, Yang J, Liu D, et al. Effects of municipal solid waste incineration fly ash on solidification/stabilization of Cd and Pb by magnesium potassium phosphate cement. J Environ Chem Eng. 2016;4(1):259–65.

    Article  CAS  Google Scholar 

  102. Zhang N, Liu X, Sun H. Hydration characteristics of intermediate-calcium based cementitious materials from red mud and coal gangue. Chin J Mater Res. 2014;28(5):325–32.

    CAS  Google Scholar 

  103. Liu X, Zhao X, Yin H, et al. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior. J Hazard Mater. 2018;349:262–71.

    Article  CAS  Google Scholar 

  104. Huang K, Fan X, Gan M, et al. Use of municipal solid waste incinerator (MSWI) fly ash in alkali activated slag cement. In: Li B et al, editors. Characterization of minerals, metals, and materials. Cham: Springer; 2019. p 401–10.

    Google Scholar 

  105. Bournonville B, Nzihou A, Sharrock P, et al. Stabilisation of heavy metal containing dusts by reaction with phosphoric acid: study of the reactivity of fly ash. J Hazard Mater. 2004;116(1):65–74.

    Article  CAS  Google Scholar 

  106. Piantone P, Bodenan F, Derie R, et al. Monitoring the stabilization of municipal solid waste incineration fly ash by phosphation: mineralogical and balance approach. Waste Manag. 2003;23(3):225–43.

    Article  CAS  Google Scholar 

  107. Quina MJ, Bordado JC, Quintaferreira RM. Chemical stabilization of air pollution control residues from municipal solid waste incineration. J Hazard Mater. 2010;179(1):382–92.

    Article  CAS  Google Scholar 

  108. Mu Y, Saffarzadeh A, Shimaoka T. Feasibility of using natural fishbone apatite on removal of Pb from municipal solid waste incineration (MSWI) fly ash. Proc Environ Sci. 2016;31:345–50.

    Article  CAS  Google Scholar 

  109. Wang H, Fan X, Wang Y, et al. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid. J Environ Manag. 2018;208:15–23.

    Article  CAS  Google Scholar 

  110. Rodella N, Bosio A, Dalipi R, et al. Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arab J Chem. 2017;10(S2):3676–81.

    Article  CAS  Google Scholar 

  111. Yuan W, Xu W, Wu Z, et al. Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process. Chemosphere. 2018;212:540–7.

    Article  CAS  Google Scholar 

  112. Zhao Y, Song L, Li G. Chemical stabilization of MSW incinerator fly ashes. J Hazard Mater. 2002;95(1):47–63.

    CAS  Google Scholar 

  113. Lundtorp K, Jensen DL, SRensen MA, et al. Treatment of waste incinerator air-pollution-control residues with FeSO4: concept and product characterisation. Waste Manag Res. 2002;20(1):69–79.

    Article  CAS  Google Scholar 

  114. Huang WJ, Lo JS. Synthesis and efficiency of a new chemical fixation agent for stabilizing MSWI fly ash. J Hazard Mater. 2004;112(1):79–86.

    Article  CAS  Google Scholar 

  115. Ecke H, Sakanankura H, Matsuto T, et al. State-of-the-art treatment processes for municipal solid waste incineration residues in Japan. Waste Manag Res. 2010;18(1):41–51.

    Article  Google Scholar 

  116. Çelik Z, Gülfen M, Aydın AO. Synthesis of a novel dithiooxamide–formaldehyde resin and its application to the adsorption and separation of silver ions. J Hazard Mater. 2010;174(1):556–62.

    Article  CAS  Google Scholar 

  117. Liu S, Guo Y, Yang H, et al. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash. J Environ Manag. 2016;182:328–34.

    Article  CAS  Google Scholar 

  118. Sakanakura H. Formation and durability of dithiocarbamic metals in stabilized air pollution control residue from municipal solid waste incineration and melting processes. Environ Sci Technol. 2007;41(5):1717–22.

    Article  CAS  Google Scholar 

  119. Wang FH, Zhao B, Zhang F, et al. A novel heavy metal chelating agent sixthio guanidine acid for in situ remediation of soils contaminated with multielements: its synthesis, solidification, biodegradability, and leachability. J Soils Sedime. 2016;16(2):371–81.

    Article  CAS  Google Scholar 

  120. Wang F, Zhang F, Chen Y, et al. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. J Hazard Mater. 2015;300:451–8.

    Article  CAS  Google Scholar 

  121. Eighmy TT, Crannell BS, Butler LG, et al. Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol. 1997;31(11):3330–8.

    Article  CAS  Google Scholar 

  122. Hyks J, Astrup TF, Christensen TH. Long-term leaching from MSWI air-pollution-control residues: leaching characterization and modeling. J Hazard Mater. 2009;162(1):80–91.

    Article  CAS  Google Scholar 

  123. Jiri H, Thomas A, Christensen TH. Influence of test conditions on solubility controlled leaching predictions from air-pollution-control residues. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA. 2007;25(5):457–66.

    Article  CAS  Google Scholar 

  124. Ma QY, Traina SJ, Logan T, et al. In situ lead immobilization by apatite. Environ Sci Technol. 1993;27(9):1803–10.

    Article  CAS  Google Scholar 

  125. Crannell BS, Eighmy TT, Krzanowski JE, et al. Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manag. 2000;20(2):135–48.

    Article  CAS  Google Scholar 

  126. Hong K, Tokunaga S, Kajiuchi T. Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater. 2000;75(1):57–73.

    Article  CAS  Google Scholar 

  127. Ma W, Chen D, Pan M, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study. J Environ Manag. 2019;247:169–77.

    Article  CAS  Google Scholar 

  128. Jing Z, Ran X, Jin F, et al. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition. Waste Manag. 2010;30(8):1521–7.

    Article  CAS  Google Scholar 

  129. Bayuseno AP, Schmahl WW, Mullejans T. Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals. J Hazard Mater. 2009;167(1):250–9.

    Article  CAS  Google Scholar 

  130. Gong B, Deng Y, Yang Y, et al. Effects of microwave-assisted thermal treatment on the fate of heavy metals in municipal solid waste incineration fly ash. Energy Fuels. 2017;31(11):12446–54.

    Article  CAS  Google Scholar 

  131. Xie JL, Hu Y, Chen D, et al. Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization. Front Environ Sci Eng China. 2010;4(1):108–15.

    Article  CAS  Google Scholar 

  132. Hu Y, Zhang P, Chen D, et al. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition. J Hazard Mater. 2012;207:79–85.

    Article  CAS  Google Scholar 

  133. Gilman JJ. Mechanochemistry. Science. 1996;274(5284):65.

    CAS  Google Scholar 

  134. Do J, Friscic T. Mechanochemistry: a force of synthesis. ACS Cent Sci. 2017;3(1):13–9.

    Article  CAS  Google Scholar 

  135. Montinaro S, Concas A, Pisu M, et al. Immobilization of heavy metals in contaminated soils through ball milling with and without additives. Chem Eng J. 2008;142(3):271–84.

    Article  CAS  Google Scholar 

  136. Nomura Y, Fujiwara K, Terada A, et al. Prevention of lead leaching from fly ashes by mechanochemical treatment. Waste Manag. 2010;30(7):1290–5.

    Article  CAS  Google Scholar 

  137. Li M, Sun C, Gau S, et al. Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. J Hazard Mater. 2010;174(1):586–91.

    Article  CAS  Google Scholar 

  138. Chen Z, Lu S, Mao Q, et al. Suppressing heavy metal leaching through ball milling of fly ash. Energies. 2016;9(524):1–13.

    CAS  Google Scholar 

  139. Yoshiharu M, Norie T, Maki T, et al. Calcium-promoted catalytic degradation of PCDDs, PCDFs, and coplanar PCBs under a mild wet process. Environ Sci Technol. 2006;40(6):1849–54.

    Article  CAS  Google Scholar 

  140. Lu S, Huang J, Zheng P, et al. Ball milling 2,4,6-trichlorophenol with calcium oxide: dechlorination experiment and mechanism considerations. Chem Eng J. 2012;195–196(7):62–8.

    Article  CAS  Google Scholar 

  141. Wang Z, Huang J, Xu F, et al. Mechanochemical destruction of pentachloronitrobenzene with reactive iron powder. J Hazard Mater. 2011;198(2):275–81.

    Google Scholar 

  142. Chen Z, Tang M, Lu S, et al. Evolution of PCDD/F-signatures during mechanochemical degradation in municipal solid waste incineration filter ash. Chemosphere. 2018;208:176–84.

    Article  CAS  Google Scholar 

  143. Chen Z, Mao Q, Lu S, et al. Dioxins degradation and reformation during mechanochemical treatment. Chemosphere. 2017;180:130–40.

    Article  CAS  Google Scholar 

  144. Yang GCC, Chuang T, Huang C. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking. Waste Manag. 2017;62:160–8.

    Article  CAS  Google Scholar 

  145. Yang J, Xiao B, Boccaccini AR. Preparation of low melting temperature glass–ceramics from municipal waste incineration fly ash. Fuel. 2009;88(7):1275–80.

    Article  CAS  Google Scholar 

  146. Lindberg D, Molin C, Hupa M. Thermal treatment of solid residues from WtE units: a review. Waste Manag. 2015;37(3):82–94.

    Article  CAS  Google Scholar 

  147. Liu Y, Zheng L, Li X, et al. SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures. J Hazard Mater. 2009;162(1):161–73.

    Article  CAS  Google Scholar 

  148. Karamanov A, Aloisi M, Pelino M. Sintering behaviour of a glass obtained from MSWI ash. J Eur Ceram Soc. 2005;25(9):1531–40.

    Article  CAS  Google Scholar 

  149. Chou S, Lo S, Hsieh C, et al. Sintering of MSWI fly ash by microwave energy. J Hazard Mater. 2009;163(1):357–62.

    Article  CAS  Google Scholar 

  150. Min Y, Liu C, Shi P, et al. Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process. Waste Manag. 2018;77:287–93.

    Article  CAS  Google Scholar 

  151. Bingham PA, Hand RJ. Vitrification of toxic wastes: a brief review. Br Ceram Trans. 2006;105(1):21–31.

    CAS  Google Scholar 

  152. Colombo P, Brusatin G, Bernardo E, et al. Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid State Mater Sci. 2003;7(3):225–39.

    Article  CAS  Google Scholar 

  153. Shi WJ, Kong LX, Bai J, et al. Effect of CaO/Fe2O3 on fusion behaviors of coal ash at high temperatures. Fuel Process Technol. 2018;181:18–24.

    Article  CAS  Google Scholar 

  154. Wang ZG, Kong LX, Bai J, et al. Effect of vanadium and nickel on iron-rich ash fusion characteristics. Fuel. 2019;246:491–9.

    Article  CAS  Google Scholar 

  155. Qiang Z, Liu H, Qian Y, et al. The influence of phosphorus on ash fusion temperature of sludge and coal. Fuel Process Technol. 2013;110(110):218–26.

    Google Scholar 

  156. Liu Z, Zhang T, Zhang J, et al. Ash fusion characteristics of bamboo, wood and coal. Energy. 2018;161:517–22.

    Article  CAS  Google Scholar 

  157. Sakai SI, Hiraoka M. Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag. 2000;20(2):249–58.

    Article  CAS  Google Scholar 

  158. Yue Y, Zhang J, Sun F, et al. Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash. J Environ Manag. 2019;232:226–35.

    Article  CAS  Google Scholar 

  159. Okada T, Tomikawa H. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash. J Environ Manag. 2012;110:207–14.

    Article  CAS  Google Scholar 

  160. Rendek E, Ducom G, Germain P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater. 2006;128(1):73–9.

    Article  CAS  Google Scholar 

  161. Nilsson M, Andreas L, Lagerkvist A. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash. Waste Manag. 2016;51(51):97–104.

    Article  CAS  Google Scholar 

  162. Ni P, Xiong Z, Tian C, et al. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash. Waste Manag. 2017;67:171–80.

    Article  CAS  Google Scholar 

  163. Ma W, Fang Y, Chen D, et al. Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace. Fuel. 2017;210:145–53.

    Article  CAS  Google Scholar 

  164. Karoly Z, Mohai I, Toth M, et al. Production of glass–ceramics from fly ash using arc plasma. J Eur Ceram Soc. 2007;27(2):1721–5.

    Article  CAS  Google Scholar 

  165. Čarnogurská M, Lázár M, Puškár M, et al. Measurement and evaluation of properties of MSW fly ash treated by plasma. Measurement. 2015;62:155–61.

    Article  Google Scholar 

  166. Zhou Y, Yan P, Cheng Z, et al. Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash. Powder Technol. 2003;135:345–53.

    Article  CAS  Google Scholar 

  167. Ren Y, Li X, Yu L, et al. Degradation of PCDD/Fs in Fly Ash by Vortex-shaped Gliding Arc Plasma. Plasma Chem Plasma Process. 2013;33(1):293–305.

    Article  CAS  Google Scholar 

  168. Luo H, Cheng Y, He D, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci Total Environ. 2019;668:90–103.

    Article  CAS  Google Scholar 

  169. Ferreira C, RibeiroAB, Ottosen LM. Possible applications for municipal solid waste fly ash. J Hazard Mater. 2003;96(2):201–216.

  170. Wang X, Li A, Zhang Z. The effects of water washing on cement-based stabilization of MWSI fly ash. Proc Environ Sci. 2016;31:440–6.

    Article  CAS  Google Scholar 

  171. Nowak B, Pessl A, Aschenmrenner P, et al. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J Hazard Mater. 2010;179(1):323–31.

    Article  CAS  Google Scholar 

  172. Jiang Y, Xi B, Li X, et al. Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator. J Hazard Mater. 2009;161(2):871–7.

    Article  CAS  Google Scholar 

  173. Yang Z, Tian S, Ji R, et al. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Manag. 2017;68:221–31.

    Article  CAS  Google Scholar 

  174. Yang R, Liao WP, Wu PH. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. J Environ Manag. 2012;104(16):67–76.

    Article  CAS  Google Scholar 

  175. Chen X, Bi Y, Zhang H, et al. Chlorides removal and control through water-washing process on MSWI fly ash. Proc Environ Sci. 2016;31:560–6.

    Article  CAS  Google Scholar 

  176. Bayuseno AP, Schmahl WW. Characterization of MSWI fly ash through mineralogy and water extraction. Resour Conserv Recycl. 2011;55(5):524–34.

    Article  Google Scholar 

  177. Chiang KY, Hu YH. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manag. 2010;30(5):831–8.

    Article  CAS  Google Scholar 

  178. Huang K, Inoue K, Harada H, et al. Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants. Trans Nonferr Met Soc China. 2011;21(6):1422–7.

    Article  CAS  Google Scholar 

  179. Nordmark D, Lagerkvist A. Controlling the mobility of chromium and molybdenum in MSWI fly ash in a washing process. Waste Manage. 2018;76:727–33.

    Article  CAS  Google Scholar 

  180. Fedje KK, Ekberg C, Skarnemark G, et al. Removal of hazardous metals from MSW fly ash—an evaluation of ash leaching methods. J Hazard Mater. 2010;173(1):310–7.

    Article  CAS  Google Scholar 

  181. Zhang HY, Ma GX. Leaching of heavy metals from municipal solid waste incineration (MSWI) fly ash using sulfuric acid. Appl Mech Mater. 2012;249–250:922–6.

    Article  CAS  Google Scholar 

  182. Zhang HY, Ma GX. Leaching of heavy metals from municipal solid waste incineration (MSWI) fly ash using nitric acid. Appl Mech Mater. 2012;249–250:918–21.

    Article  CAS  Google Scholar 

  183. Kang D, Son J, Yoo Y, et al. Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chem Eng J. 2020;380:1–11.

    Google Scholar 

  184. Henric L, Karin Karlfeldt F, Britt-Marie S. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation. Waste Manag Res. 2014;32(8):755–62.

    Article  CAS  Google Scholar 

  185. Ke Y, Li P, Wei P, et al. Characteristics of heavy metals leaching from MSWI fly ashes in sequential scrubbing processes. J Mater Cycles Waste Manag. 2018;20(1):604–13.

    Article  CAS  Google Scholar 

  186. Tomonori I, Akane N, Masafumi T, et al. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere. 2005;60(8):1087–94.

    Article  CAS  Google Scholar 

  187. Mulligan CN, Mahtab K, Gibbs BF. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J Hazard Mater. 2004;110(1–3):77–84.

    Article  CAS  Google Scholar 

  188. Krebs W, Bachofen R, Brandl H. Growth stimulation of sulfur oxidizing bacteria for optimization of metal leaching efficiency of fly ash from municipal solid waste incineration. Hydrometallurgy. 2001;59(2):283–90.

    Article  CAS  Google Scholar 

  189. Xu TJ, Ramanathan T, Ting YP. Bioleaching of incineration fly ash by Aspergillus niger—precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnol Rep. 2014;3:8–14.

    Article  Google Scholar 

  190. Wang Q, Yang J, Wang Q, et al. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. J Hazard Mater. 2009;162(2):812–8.

    Article  CAS  Google Scholar 

  191. Ramanathan T, Ting YP. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles. Chemosphere. 2016;160:54–61.

    Article  CAS  Google Scholar 

  192. Funari V, Mäkinen J, Salminen L, et al. Metal removal from Municipal Solid Waste Incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag. 2016;60:397–406.

    Article  CAS  Google Scholar 

  193. Ferreira C, Jensen P, Ottosen L, et al. Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Eng Geol. 2005;77(3):339–47.

    Article  Google Scholar 

  194. Kirkelund GM, Jensen PE. Electrodialytic treatment of Greenlandic municipal solid waste incineration fly ash. Waste Manage. 2018;80:241–51.

    Article  CAS  Google Scholar 

  195. Chen W, Kirkelund GM, Jensen PE, et al. Comparison of different MSWI fly ash treatment processes on the thermal behavior of As, Cr, Pb and Zn in the ash. Waste Manag. 2017;24(27):21591–600.

    Google Scholar 

  196. Chen W, Kirkelund GM, Jensen PE, et al. Electrodialytic extraction of Cr from water-washed MSWI fly ash by changing pH and redox conditions. Waste Manag. 2018;71:215–23.

    Article  CAS  Google Scholar 

  197. Andrés-Mañas JA, Ruiz-Aguirre A, Acién FG, et al. Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination. 2018;443:110–21.

    Article  CAS  Google Scholar 

  198. Hamieh BM, Beckman JR. Seawater desalination using Dewvaporation technique: theoretical development and design evolution. Desalination. 2006;195(1):1–13.

    Article  CAS  Google Scholar 

  199. Yue D, Xu Y, Mahar R, et al. Laboratory-scale experiments applied to the design of a two-stage submerged combustion evaporation system. Waste Manag. 2007;27(5):704–10.

    Article  Google Scholar 

  200. Tang J, Su M, Zhang H, et al. Assessment of copper and zinc recovery from MSWI fly ash in Guangzhou based on a hydrometallurgical process. Waste Manag. 2018;76:225–33.

    Article  CAS  Google Scholar 

  201. Tang J, Yimen R, Petranikova M, et al. Comparative study of the application of traditional and novel extractants for the separation of metals from MSWI fly ash leachates. J Clean Prod. 2018;172:143–54.

    Article  CAS  Google Scholar 

  202. Wu YW, Pang H, Liu Y, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut. 2019;246:608–20.

    Article  CAS  Google Scholar 

  203. Xing L, Yang L, Zhang C, et al. Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chem Eng J. 2017;336:241–52.

    Google Scholar 

  204. Tang J, Su M, Wu Q, et al. Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption. J Clean Prod. 2019;234:139–49.

    Article  CAS  Google Scholar 

  205. Ng VMH, Hui H, Zhou K, et al. Correction: recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A. 2017;5(18):3039–68.

    Google Scholar 

  206. Zou Y, Wang P, Wen Y, et al. Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater. Chem Eng J. 2017;330:573–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyi Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, Z., Fang, Z. et al. Review of harmless treatment of municipal solid waste incineration fly ash. Waste Dispos. Sustain. Energy 2, 1–25 (2020). https://doi.org/10.1007/s42768-020-00033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-020-00033-0

Keywords

Navigation