Skip to main content
Log in

Iron-loaded carbon derived from separated microplastics for heterogeneous Fenton degradation of tetracycline hydrochloride

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microplastics are gaining growing research interest due to their significant potential threats to ecosystems and public health. Physical techniques have been proposed as a promising strategy for removing microplastics from the environment. This work innovatively proposes a process of microplastic removal by froth flotation and subsequent carbonization for synthesis of heterogeneous Fenton catalyst. The feasibility of separating different microplastics from water was verified by froth flotation, and iron-loaded carbon derived from separated microplastics was fabricated as catalyst. Carbon material was obtained by carbonization of microplastics, and iron loading was conducted to improve catalytic ability. The catalyst of iron-loaded iron was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The degradation of tetracycline hydrochloride in the heterogeneous Fenton system was evaluated by single factor experiment and kinetic analysis. The catalytic performance was mainly influenced by H2O2 concentration, solution pH, and co-existing ions. Under the conditions of catalyst 20 mg/L, H2O2 concentration 0.99 mmol/L, initial tetracycline hydrochloride concentration 20 mg/L, pH 4.0, and temperature 25 °C, the removal rate of tetracycline hydrochloride within 15 min reached 81.6%, and the rate constant was 0.138min−1. The catalytic mechanism dominated by hydroxyl radical was verified for the degradation of tetracycline hydrochloride. This work offers insights into the management of microplastics and sustainable treatment of antibiotic wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wang, D. Luo, O. Hamdaoui, Y. Vasseghian, M. Momotko, G. Boczkaj and C. Wang, Sci. Total Environ., 876, 162551 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. C. G. Joseph, Y. H. Taufiq-Yap, N. A. Affandi, J. L. H. Nga and V. Vijayan, Korean J. Chem. Eng., 39(3), 484 (2022).

    Article  CAS  Google Scholar 

  3. K. Tian, L. Hu, L. Li, Q. Zheng, Y. Xin and G. Zhang, Chin. Chem. Lett., 33(10), 4461 (2022).

    Article  CAS  Google Scholar 

  4. M. A. Uddin, B. H. Sutonu, M. A. Rub, S. Mahbub, M. M. Alotaibi, A. M. Asiri and M. Kabir, Korean J. Chem. Eng., 39(3), 664 (2022).

    Article  CAS  Google Scholar 

  5. A. Balakrishnan, M. Chinthala, R.K. Polagani and D.-V.N. Vo, Environ. Res., 216(Pt 3), 114660 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. A. R. Bracamontes-Ruelas, L. A. Ordaz-Díaz, A. M. Bailón-Salas, J. C. Ríos-Saucedo, Y. Reyes-Vidal and L. Reynoso-Cuevas, Processes, 10(5), 1041 (2022).

    Article  CAS  Google Scholar 

  7. L. Wang, H. Jiang, H. Wang, P. L. Show, A. Ivanets, D. Luo and C. Wang, J. Environ. Chem. Eng., 10(6), 108954 (2022).

    Article  CAS  Google Scholar 

  8. A. Hojjati-Najafabadi, A. Aygun, R. N. E. Tiri, F. Gulbagca, M. I. Lounissaa, P. Feng and F. Sen, Ind. Eng. Chem. Res., 62(11), 4655 (2023).

    Article  CAS  Google Scholar 

  9. E. Baladi, F. Davar and A. Hojjati-Najafabadi, Environ. Res., 215, 114270 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. M. Mansoorianfar, H. Nabipour, F. Pahlevani, Y. Zhao, Z. Hussain, A. Hojjati-Najafabadi and R. Pei, Environ. Res., 214(Pt 4), 114113 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway and R. Thompson, Environ. Sci. Technol., 45(21), 9175 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Y.J. Lee, J.W. Yang, B. Choi, S. J. Park, C. G. Lee and E. H. Jho, Korean J. Chem. Eng., 40(3), 612 (2023).

    Article  CAS  Google Scholar 

  13. C. M. Rochman, Science, 360(6384), 28 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. H. Golwala, X. Zhang, S. M. Iskander and A. L. Smith, Sci. Total Environ., 769, 144581 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zhang, H. Jiang, K. Bian, H. Wang and C. Wang, Sci. Total Environ., 792, 148345 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. G. Zhou, Q. Wang, J. Li, Q. Li, H. Xu, Q. Ye, Y. Wang, S. Shu and J. Zhang, Sci. Total Environ., 752, 141837 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. M. Malankowska, C. Echaide-Gorriz and J. Coronas, Environ. Sci.: Water Res. Technol., 7(2), 243 (2021).

    CAS  Google Scholar 

  18. L. Fu, J. Li, G. Wang, Y. Luan and W. Dai, Ecotoxicol. Environ. Saf., 217, 112207 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. H. Jiang, Y. Zhang, K. Bian, H. Wang and C. Wang, J. Environ. Chem. Eng., 10(3), 107834 (2022).

    Article  CAS  Google Scholar 

  20. Y. Zhang, H. Jiang, K. Bian, H. Wang and C. Wang, J. Environ. Chem. Eng., 9(4), 105463 (2021).

    Article  CAS  Google Scholar 

  21. H. Jiang, Y. Zhang, K. Bian, C. Wang, X. Xie, H. Wang and H. Zhao, Chem. Eng. J., 448, 137692 (2022).

    Article  CAS  Google Scholar 

  22. C. Wang, R. Sun and R. Huang, J. Cleaner Prod., 297, 126681 (2021).

    Article  CAS  Google Scholar 

  23. H. Wang, C. Wang, J. Fu and G. Gu, Colloids Surf., A., 424, 10 (2013).

    Article  CAS  Google Scholar 

  24. H. Feilin and S. Mingwei, Process Saf. Environ. Prot., 168, 613 (2022).

    Article  Google Scholar 

  25. H. Jiang, J. Bu, K. Bian, J. Su, Z. Wang, H. Sun, H. Wang, Y. Zhang and C. Wang, Water Res., 233, 119794 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Y. Pan, I. Gresham, G. Bournival, S. Prescott and S. Ata, Powder Technol., 397, 117028 (2022).

    Article  CAS  Google Scholar 

  27. A. Bahrami, Y. Ghorbani, M. R. Hosseini, F. Kazemi, M. Abdollahi and A. Danesh, Mining Metall. Explor., 36(2), 409 (2019).

    Google Scholar 

  28. C. Wang, R. Huang, R. Sun, J. Yang and D. D. Dionysiou, J. Cleaner Prod., 330, 129901 (2022).

    Article  CAS  Google Scholar 

  29. C. Wang, R. Sun, R. Huang and H. Wang, Sep. Purif. Technol., 270, 118773 (2021).

    Article  CAS  Google Scholar 

  30. R. Sun, X. Zhang, C. Wang and Y. Cao, J. Environ. Chem. Eng., 9(4), 105368 (2021).

    Article  CAS  Google Scholar 

  31. J. Dai, X. Meng, Y. Zhang and Y. Huang, Bioresour. Technol., 311, 123455 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. C. Wang, J. Yang, R. Huang and Y. Cao, J. Cent. South Univ., 29(12), 3884 (2022).

    Article  CAS  Google Scholar 

  33. M. Cheng, Y. Liu, D. Huang, C. Lai, G. Zeng, J. Huang, Z. Liu, C. Zhang, C. Zhou, L. Qi, W. Xiong, H. Yi and Y. Yang, Chem. Eng. J., 362, 865 (2019).

    Article  CAS  Google Scholar 

  34. Y. Ren, J. Yu, J. Zhang, L. Lv and W. Zhang, Appl. Catal., B., 299, 120697 (2021).

    Article  CAS  Google Scholar 

  35. X. Sun, X. Ni, X. Wang and D. Xu, Surf. Interfaces, 31, 102053 (2022).

    Article  CAS  Google Scholar 

  36. M. González-Davila, J. M. Santana-Casiano and F. J. Millero, Geochim. Cosmochim. Acta, 69(1), 83 (2005).

    Article  Google Scholar 

  37. S. Chen, P. Xiong, W. Zhan and L. Xiong, Miner. Eng., 122, 38 (2018).

    Article  CAS  Google Scholar 

  38. L. Wang, D. Luo, J. Yang and C. Wang, J. Cleaner Prod., 375, 134118 (2022).

    Article  CAS  Google Scholar 

  39. L. Hu, G. Zhang, M. Liu, Q. Wang and P. Wang, Chem. Eng. J., 338, 300 (2018).

    Article  CAS  Google Scholar 

  40. J. Huang, M. Wang, S. Luo, Z. Li and Y. Ge, Environ. Res., 219, 115166 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. S. Wang and J. Wang, Chem. Eng. J., 351, 688 (2018).

    Article  CAS  Google Scholar 

  42. D.-H. Xie, P.-C. Guo, K.-Q. Zhong and G.-P. Sheng, Appl. Catal., B., 319, 121923 (2022).

    Article  CAS  Google Scholar 

  43. H.-Y. Xu, Y. Xu, S.-Q. Zhang, L.-Y. Dai and Y. Wang, Mater. Lett., 337, 133985 (2023).

    Article  CAS  Google Scholar 

  44. Y. Zhu, Q. Xie, R. Zhu, Y. Lv, Y. Xi, J. Zhu and J. Fan, Chemo-sphere, 287, 131933 (2022).

    Article  CAS  Google Scholar 

  45. Y. Liu, J. Li, L. Wu, D. Wan, Y. Shi, Q. He and J. Chen, Sci. Total Environ., 761, 143956 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. X. Li, X. Zhang, S. Wang, P. Yu, Y. Xu and Y. Sun, J. Environ. Manage., 312, 114856 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. W. Hua and Y. Kang, Korean J. Chem. Eng., 40(5), 1122 (2023).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guosheng Li, Yasser Vasseghian or Chongqing Wang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2023_1516_MOESM1_ESM.pdf

Iron-loaded carbon derived from separated microplastics for heterogeneous Fenton degradation of tetracycline hydrochloride

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, X., Li, G. et al. Iron-loaded carbon derived from separated microplastics for heterogeneous Fenton degradation of tetracycline hydrochloride. Korean J. Chem. Eng. 40, 2921–2928 (2023). https://doi.org/10.1007/s11814-023-1516-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1516-x

Keywords

Navigation