Skip to main content
Log in

Silkworm Silk Fibers with Multiple Reinforced Properties Obtained through Feeding Ag Nanowires

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Silkworm silk fibers have been woven into textiles for thousands of years, because of their attractive luster, good mechanical properties, excellent biocompatibility, and large-scale production. With the development of human society, preparation of silk fibers with modified or enhanced properties are highly desirable for potential applications in structural materials and smart textiles. Herein, we realized the reinforcement of multiple properties of silk fibers by feeding silkworms with Ag nanowire (Ag NW) modified diets. The obtained silk fibers show obviously enhanced comprehensive mechanical properties, including improved tensile strength, elongation at break, tensile modulus, and toughness, which are increased by 37.2%, 37.6%, 68.3%, and 69.8%, respectively. Furthermore, compared with unmodified silk, the electrical conductivity and thermal conductivity of modified silk fibers are improved by 246.4% and 32.1%, respectively. The analysis on the components and structure shows that the incorporated Ag NWs lead to increased content of random coil/α-helix, improved orientation of crystallites, and increased content of Ag compared to pristine silk fibers, which may contribute to the enhanced mechanical, electrical, and thermal properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang S, Lu A, Zhang L. Recent advances in regenerated cellulose materials. Prog Polym Sci 2016;53:169.

    Article  CAS  Google Scholar 

  2. Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 2016;28:3669.

    Article  CAS  Google Scholar 

  3. Jin J, Lee D, Im H-G, Han YC, Jeong EG, Rolandi M, Choi KC, Bae B-S. Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 2016;28:5169.

    Article  CAS  Google Scholar 

  4. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010;329:528.

    Article  CAS  Google Scholar 

  5. Kasoju N, Bora U. Silk fibroin in tissue engineering. Adv Healthc Mater 2012;1:393.

    Article  CAS  Google Scholar 

  6. Partlow BP, Hanna CW, Rnjak-Kovacina J, Moreau JE, Applegate MB, Burke KA, Marelli B, Mitropoulos AN, Omenetto FG, Kaplan DL. Highly tunable elastomeric silk biomaterials. Adv Funct Mater 2014;24:4615.

    Article  CAS  Google Scholar 

  7. Tsioris K, Raja WK, Pritchard EM, Panilaitis B, Kaplan DL, Omenetto FG. Fabrication of silk microneedles for controlled-release drug delivery. Adv Funct Mater 2012;22:330.

    Article  CAS  Google Scholar 

  8. Lammel AS, Hu X, Park S-H, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010;31:4583.

    Article  CAS  Google Scholar 

  9. Wang C, Wu S, Jian M, Xie J, Xu L, Yang X, Zheng Q, Zhang Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res 2016;9:2590.

    Article  CAS  Google Scholar 

  10. Lv L, Han X, Zong L, Li M, You J, Wu X, Li C. Biomimetic hybridization of kevlar into silk fibroin: nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes. ACS Nano 2017;11:8178.

    Article  CAS  Google Scholar 

  11. Yin Z, Jian M, Wang C, Xia K, Liu Z, Wang Q, Zhang M, Wang H, Liang X, Liang X, Long Y, Yu X, Zhang Y. Splash-resistant and light-weight silk-sheathed wires for textile electronics. Nano Lett 2018;18:7085.

    Article  CAS  Google Scholar 

  12. Wang C, Li X, Gao E, Jian M, Xia K, Wang Q, Xu Z, Ren T, Zhang Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 2016;28:6640.

    Article  CAS  Google Scholar 

  13. Kujala S, Mannila A, Karvonen L, Kieu K, Sun Z. Natural silk as a photonics component: a study on its light guiding and nonlinear optical properties. Sci Rep 2016;6:1.

    Article  CAS  Google Scholar 

  14. Omenetto FG, KapLan DL. A new route for silk. Nat Photonics 2008;2:641.

    Article  CAS  Google Scholar 

  15. Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nat Rev Mater 2018;3:1.

    Article  CAS  Google Scholar 

  16. Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y, Low M, Ye E, Yu H-D, Zhang Y-W, Han M-Y. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 2015;46:86.

    Article  CAS  Google Scholar 

  17. Huang X, Liu G, Wang X. New secrets of spider silk: Exceptionally high thermal conductivity and its abnormal change under stretching. Adv Mater 2012;24:1482.

    Article  CAS  Google Scholar 

  18. Lu Z, Mao C, Zhang H. Highly conductive graphene-coated silk fabricated via a repeated coating-reduction approach. J Mater Chem C 2015;3:4265.

    Article  CAS  Google Scholar 

  19. Tamura T, Thilbert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P. Germline transformation of the silkworm Bombyx mori L-using a piggyBac transposon-derived vector. Nat Biotechnol 2000;18:81.

    Article  CAS  Google Scholar 

  20. Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T. Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromol 2007;8:3487.

    Article  CAS  Google Scholar 

  21. Dong Q, Su HL, Zhang D. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J Phys Chem B 2005;109:17429.

    Article  CAS  Google Scholar 

  22. Xu S, Yong L, Wu P. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl Mater Inter 2013;5:654.

    Article  CAS  Google Scholar 

  23. Ling S, Wang Q, Zhang D, Zhang Y, Mu X, Kaplan DL, Buehler MJ. Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv Funct Mater 2018;28:1705291.

    Article  CAS  Google Scholar 

  24. Guo Z, Xie W, Gao Q, Wang D, Gao F, Li S, Zhao L. In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. Int J Biol Macromol 2018;109:21.

    Article  CAS  Google Scholar 

  25. Tansil NC, Li Y, Teng CP, Zhang S, Win KY, Chen X, Liu XY, Han M-Y. Intrinsically colored and luminescent silk. Adv Mater 2011;23:1463.

    Article  CAS  Google Scholar 

  26. Zheng X, Zhao M, Zhang H, Fan S, Sha H, Hu X, Zhang Y. Intrinsically fluorescent silks from silkworms fed with rare-earth upconverting phosphors. ACS Biomater Sci Eng 2018;4:4021.

    Article  CAS  Google Scholar 

  27. Yan M, Ma X, Yang Y, Wang X, Cheong W-C, Chen Z, Xu X, Huang Y, Wang S, Lian C, Li Y. Biofabrication strategy for functional fabrics. Nano Lett 2018;18:6017.

    Article  CAS  Google Scholar 

  28. Wang J-T, Li L-L, Feng L, Li J-F, Jiang L-H, Shen Q. Directly obtaining pristine magnetic silk fibers from silkworm. Int J Biol Macromol 2014;63:205.

    Article  CAS  Google Scholar 

  29. Wang Q, Wang C, Zhang M, Jian M, Zhang Y. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett 2016;16:6695.

    Article  CAS  Google Scholar 

  30. Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. Int J Thermophys 2000;21:965.

    Article  CAS  Google Scholar 

  31. Cai L, Shao H, Hu X, Zhang Y. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain Chem Eng 2015;3:2551.

    Article  CAS  Google Scholar 

  32. Wu G, Song P, Zhang D, Liu Z, Li L, Huang H, Zhao H, Wang N, Zhu Y. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int J Biol Macromol 2017;104:533.

    Article  CAS  Google Scholar 

  33. Cheng L, Huang H, Chen S, Wang W, Dai F, Zhao H. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater Design 2017;129:125.

    Article  CAS  Google Scholar 

  34. Fang G, Zheng Z, Yao J, Chen M, Tang Y, Zhong J, Qi Z, Li Z, Shao Z, Chen X. Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks. J Mater Chem B 2015;3:3940.

    Article  CAS  Google Scholar 

  35. Zhang C, Zhang Y, Shao H, Hu X. Hybrid silk fibers’ dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Inter 2016;8:3349.

    Article  CAS  Google Scholar 

  36. Ryan JD, Mengistie DA, Gabrielsson R, Lund A, Müller C. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl Mater Inter 2017;9:9045.

    Article  CAS  Google Scholar 

  37. Liu Q, Meng Z, Wu R, Ma L, Qiu W, Zhang H, Zhu S, Kong L, Xu Z, Patil A, Liu X. A novel facile and green synthesis protocol to prepare high strength regenerated silk fibroin/SiO2 composite fiber. Fiber Polym 2019;20:2222.

    Article  CAS  Google Scholar 

  38. Ma L, Liu Q, Wu R, Meng Z, Patil A, Yu R, Yang Y, Zhu S, Fan X, Hou C, Li Y, Qiu W, Huang L, Wang J, Lin N, Wan Y, Hu J, Liu XY. From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small 2020;16:2000203.

    Article  CAS  Google Scholar 

  39. Lu Z, Meng M, Jiang Y, Xie J. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloid Surf A 2014;447:1.

    Article  CAS  Google Scholar 

  40. Feng XX, Zhang LL, Chen JY, Guo YH, Zhang HP, Jia CI. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2. Int J Biol Macromol 2007;40:105.

    Article  CAS  Google Scholar 

  41. Sionkowska A, Lewandowska K, Planecka A. Miscibility and physical properties of chitosan and silk fibroin mixtures. J Mol Liq 2014;198:354.

    Article  CAS  Google Scholar 

  42. Cho SY, Yun YS, Lee S, Jang D, Park K-Y, Kim JK, Kim BH, Kang K, Kaplan DL, Jin H-J. Carbonization of a stable beta-sheet-rich silk protein into a pseudographitic pyroprotein. Nat Commun 2015;6:1.

    CAS  Google Scholar 

  43. Guo C, Zhang J, Wang X, Anh Tuan N, Liu XY, Kaplan DL. Comparative study of strain-dependent structural changes of silkworm silks: insight into the structural origin of strain-stiffening. Small 2017;13:1702266.

    Article  CAS  Google Scholar 

  44. Keten S, Xu Z, Ihle B, Buehler MJ. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 2010;9:359.

    Article  CAS  Google Scholar 

  45. Foo CWP, Bini E, Hensman J, Knight DP, Lewis RV, Kaplan DL. Role of pH and charge on silk protein assembly in insects and spiders. Appl Phys A 2006;82:223.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21975141 and 52125201), and the National Key Basic Research and Development Program (2020YFA0210702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1580 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Jian, M., Yin, Z. et al. Silkworm Silk Fibers with Multiple Reinforced Properties Obtained through Feeding Ag Nanowires. Adv. Fiber Mater. 4, 547–555 (2022). https://doi.org/10.1007/s42765-021-00130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00130-7

Keywords

Navigation