Skip to main content

Recent Progress in Synthesis Methods of Shape-Memory Polymer Nanocomposites

  • Chapter
  • First Online:
Shape Memory Composites Based on Polymers and Metals for 4D Printing

Abstract

Shape-memory polymers (SMPs) and their composites are a new class of smart polymer materials gaining wide attention due to their multifunctional applications in micro-electromechanical systems (MEMS), actuators for self-healing and health monitoring purposes, and biomedical devices. In this review chapter, we discuss the basics of shape-memory polymers (SMPs) and shape-memory polymer nanocomposites (SMPNCs) along with the working principle of their shape-memory property with a brief description of analysis techniques. To gain a systematic understanding, the following sections are dedicated to conventional as well as advanced methods of fabricating SMPNCs with suitable applications wherever relevant. We focus on the reinforcement strategies based on filler properties or matrix composition that enable the utilization of advanced manufacturing methods for potential applications including robotics, and biomedical devices with the activation by various stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314

    Article  Google Scholar 

  2. Carter GF, Paul DE (1991) Materials science and engineering. ASM International, ©

    Google Scholar 

  3. Kumar SK, Benicewicz BC, Vaia RA, Winey KI (2017) 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50:714–731

    Article  Google Scholar 

  4. Adireddy S, Puli VS, Lou TJ, Elupula R, Sklare SC, Riggs BC, Chrisey DB (2015) Polymer-ceramic nanocomposites for high energy density applications. JSol-Gel Sci Technol 73:641–646

    Google Scholar 

  5. Puli VS, Ejaz M, Elupula R, Kothakonda M, Adireddy S, Katiyar RS, Grayson SM, Chrisey DB (2016) Core-shell like structured barium zirconium titanate-barium calcium titanatepoly(methyl methacrylate) nanocomposites for dielectric energy storage capacitors. Polymer 105:35–42

    Google Scholar 

  6. Kakkar R, Sherly ED, Madgula K, Devi DK, Sreedhar B (2012) Synergetic effect of sodium citrate and starch in the synthesis of silver nanoparticles. J Appl Polym Sci 126(S1):E154–E161. https://doi.org/10.1002/app.36727

  7. Lester B, Vernon B, Vernon HM (1941) Process of manufacturing articles of thermoplastic synthetic resins. US Patent No. 2234993

    Google Scholar 

  8. Kunzelman J, Chung T, Mather PT, Weder C (2008) Shape-memory polymers with built-in threshold temperature sensors. J Mater Chem 18:1082–1086

    Article  Google Scholar 

  9. Andreas, KS (2005) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Google Scholar 

  10. Langer RS, Lendlein A, Schmidt A, Grablowitz H (2000) Biodegradable shape-memory polymers, USA Patent No. 6,160,084

    Google Scholar 

  11. Leng J, Lan X, Liu Y, Shanyi Du (2011) Shape-memory polymers and their composites: stimulus methods and application. Prog Mater Sci 56:1077–1135

    Article  Google Scholar 

  12. Tong Mu, Liu L, Lan X, Liu Y, Leng J (2018) Shape-memory polymers for composites. Compos Sci Technol 160:169–198

    Article  Google Scholar 

  13. Wang W, Liu Y, Leng J (2016) Recent developments in shape-memory polymer nanocomposites: actuation methods and mechanisms. Coord Chem Rev 320–321:38–52

    Article  Google Scholar 

  14. Tobushi H, Hayashi S, Kojima S (1992) Japn Sot Mech Engrs Int J 35:296

    Google Scholar 

  15. Kim BK, Lee SY, Xu M (1996) Polyurethanes having shape-memory effects. Polymer 37(26):5781–5793. https://doi.org/10.1016/s0032-3861(96)00442-9

    Article  Google Scholar 

  16. Ponnamma D, Sadasivuni KK, Strankowski M, Moldenaers P, Thomas S, Grohens Y (2013) Interrelated shape-memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv 3:16068–16079

    Google Scholar 

  17. Xie T (2010) Tunable polymer multi-shape-memory effect. Nature 464:267–270. https://doi.org/10.1038/nature08863

    Article  Google Scholar 

  18. Thakur S, Jinlian Hu (2017) Polyurethane: a Shape-Memory Polymer (SMP), aspects of polyurethanes, Faris Yilmaz. Intech Open. https://doi.org/10.5772/intechopen.69992

    Article  Google Scholar 

  19. Li JJ, Rodgers WR, Xie T (2011) Semi-crystalline two-way shape-memory elastomer. Polymer 52:5320–5325

    Google Scholar 

  20. Guo Q, Groeninckx G (2001) Crystallization kinetics of poly (ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly (ε-caprolactone). Polymer 42(21):8647–8655

    Article  Google Scholar 

  21. Thompson CB, Korley LTJ (2020) 100th anniversary of macromolecular science view point: engineering supramolecular materials for responsive applications- design and functionality. ACS Macro Lett 9:1198–1216. https://doi.org/10.1021/acsmacrolett.0c00418

  22. Huurne GMT, Palmans ARA, Meijer EW (2019) Supramolecular single-chain polymeric nanoparticles. CCS Chem 1:64−82

    Google Scholar 

  23. Qin B, Yin Z, Tang X, Zhang S, Wu Y, Xu JF, Zhang X (2020) Supramolecular polymer chemistry: from structural control to functional assembly. Prog Polym Sci 100:101167

    Google Scholar 

  24. Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape-memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8, 16:10070–10087

    Google Scholar 

  25. Bocsan IA, Conradi M, Zorko M, Jerman I, Hancu L, Borzan M, Fabre M, Ivens J (2012) Shape-memory polymers filled with SiO2 nanoparticles. Mater Technol 46, 3:243–246

    Google Scholar 

  26. Meng Q, Hu J (2009) A review of shape-memory polymer composites and blends. Compos: Part A 40:1661–1672

    Google Scholar 

  27. Herbert KM, Schrett S, Rowan SJ, Weder C (2017) 50th anniversary perspective: solid-state multi stimuli, multi responsive polymeric materials. Macromolecules 50, 22:8845–8870 https://doi.org/10.1021/acs.macromol.7b01607

  28. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electroactive shape-memory polymer composite. Compos Sci Technol 69(13):2064–2068

    Article  Google Scholar 

  29. Wang WX, Liu D, Lu L, Chen H, Gong T, Lu J, Zhou S (2016) The improvement of shape-memory function of Poly(ε-caprolactone)/nanocrystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J Mater Chem A 4(16):5984–5992

    Article  Google Scholar 

  30. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511

    Article  Google Scholar 

  31. Madgula K, Shubha LN (2020) Conducting polymer nanocomposite-based gas sensors, functional nanomaterials. Springer, Singapore, pp 399–431

    Google Scholar 

  32. Sun H, Zhang H, Zhang J, Ning Y, Yao Y, Bao X, Wang C, Li M, Yang B (2008) J Phys Chem C 112:2317

    Article  Google Scholar 

  33. Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Macromolecules 41:7536

    Google Scholar 

  34. Iyer S, Schiraldi DA (2007) Role of Specific interactions and solubility in the reinforcement of Bisphenol A polymers with polyhedral oligomeric Silsesquioxanes. Macromolecules 40:4942

    Article  Google Scholar 

  35. Kakkar R, Madgula K, Saritha Nehru YV, Shailaja RM, Sreedhar B (2014) Polyvinyl alcohol-melamine formaldehyde resin composite and nanocomposites with Ag, TiO2, ZnO nanoparticles as antimicrobial films. Coat Sprays 3, 10–12:1088–1097. http://dx.doi.org/https://doi.org/10.17628/ecb.2014.3.1088-1097

  36. Atif R, Inam F (2016) Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J Nanotechnol 7:1174–1196. https://doi.org/10.3762/bjnano.7.109

    Article  Google Scholar 

  37. Lu H, Yao Y, Huang WM, Hui D (2014) Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape-memory nanocomposites. Compos Part B- Eng 67:290–295

    Google Scholar 

  38. Samy A (2010) Madbouly and Andreas Lendlein. Shape-Memory Polym Compos Adv Polym Sci 226:41–95. https://doi.org/10.1007/12_2009_28

    Article  Google Scholar 

  39. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41, 9:1471–1485. https://doi.org/10.1002/pen.10846

  40. Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials (Basel, Switzerland) 7(4):74. https://doi.org/10.3390/nano7040074

    Article  Google Scholar 

  41. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69:2064

    Article  Google Scholar 

  42. Ratna D, Karger-Kocsis J (2008) Recent advances in shape-memory polymers and composites: a review. J Mater Sci 43:254

    Article  Google Scholar 

  43. Gunes IS, Jana SC (2008) Evaluation of nanoparticulate fillers for development of shape-memory polyurethane nanocomposites. J Nanosci Nanotechnol 8:1616

    Google Scholar 

  44. Wei ZG, Sandstrom R, Miyazaki S, Shape-memory materials and hybrid composites for smart system—Part I Shape-memory materialsJ Mater Sci 33, 3743(1998)

    Google Scholar 

  45. Gall K (2002) Shape-memory polymer nanocomposites. Acta Mater 50:5115

    Google Scholar 

  46. Li H, Zhong J, Meng J, Xian G (2013) The reinforcement efficiency of carbon nanotubes/shape-memory polymer nanocomposites. Compos B Eng 44(1):508–516

    Article  Google Scholar 

  47. Zheng X, Zhou S, Li X, Weng J (2006) Shape-memory properties of poly(D, L-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295

    Article  Google Scholar 

  48. Scarborough SE, Cadogan DP (2006) Applications of inflatable rigidizable structures. In: The society for the advancement of material and process engineering conference sampe. Long Beach, CA

    Google Scholar 

  49. Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913

    Article  Google Scholar 

  50. Yao XF, Liu DL, Yeh HY (2007) Mechanical properties and gradient variations of polymers under ultraviolet radiation. J Appl Polym Sci 106:3253–3258

    Article  Google Scholar 

  51. Zhao PZ, Hua XY, Wang YS, Zhu JH, Wen QZ (2007) Mater Sci Eng A 457:231–235

    Google Scholar 

  52. Hexig B, Alata H, Asakawa N, Inoue Y (2005) Novel biodegradable poly(butylene succinate)/poly(ethylene oxide) blend film with compositional and spherulite‐size gradients. J Polym Sci Part B: Polym Phys 43:368–377

    Google Scholar 

  53. Zhu YB, Ning NY, Sun Y, Zhang Q, Fu Q (2006) A new technique for preparing a filled type of polymeric gradient material. Macromol Mater Eng 291:1388–1396

    Article  Google Scholar 

  54. DiOrio AM, Luo X, Lee KM, Mather PT (2011) A functionally graded shape-memory polymer. Soft Matter 7,1:68–74

    Google Scholar 

  55. Larson C et al (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351:1071–1074

    Article  Google Scholar 

  56. Laschi C, Mazzolai B, Cianchetti M (2016) Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot 1, eaah3690

    Google Scholar 

  57. Mazzolai B, Mattoli V (2016) Robotics: generation soft. Nature 536:400

    Article  Google Scholar 

  58. Sadeghi A, Mondini A, Mazzolai B (2017) Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot 4:211–223

    Article  Google Scholar 

  59. Sadeghi A, Tonazzini A, Popova L, Mazzolai B (2014) A novel growing device inspired by plant root soil penetration behaviors. PLOS ONE 9(2):e90139

    Google Scholar 

  60. Kotek R (2008) Recent advances in polymer fibers. Polym Rev 48:221–229

    Article  Google Scholar 

  61. Gong T, Li WB, Chen HM, Wang L, Shao SJ et al (2012) Remotely actuated shape-memory effect of electrospun composite nanofibers. Acta Biomater 8:1248–1259

    Article  Google Scholar 

  62. Andreas G, Joachim HW (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Ange Chem Int Ed Engl 46:5670–5703

    Article  Google Scholar 

  63. Zhang FH, Zhang ZC, Liu YJ, Lu HB, Leng JS (2013) The quintuple-shape-memory effect in electrospun nanofiber membranes. Smart Mater Struct 22:085020

    Google Scholar 

  64. Banikazemi S, Rezaei M, Rezaei P, Babaie A, Eyvazzadeh‐Kalajahi A (2020) Preparation of electrospun shape-memory polyurethane fibers in optimized electrospinning conditions via response surface methodology. Polym Adv Technol. https://doi.org/10.1002/pat.4940

  65. Xia R, Zhou H, Wu R, Wu WP (2016) Nanoindentation investigation of temperature effects on the mechanical properties of nafion® 117. Polymers (Basel) 8(9):344. Published 2016 Sep 20. https://doi.org/10.3390/polym8090344

  66. Garg, Bowl GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics Am Inst Phys (AIP) 5:013403

    Google Scholar 

  67. Stephens JS, Chase DB, Rabolt JF (2004) Effect of the electrospinning process on polymer crystallization chain conformation in Nylon-6 and Nylon-12. Macromolecules 37(3):877–888

    Article  Google Scholar 

  68. Meng QH, Hu JL, Zhu Y, Lu J, Liu Y (2007) Morphology, phase separation, thermal and mechanical property differences of shape-memory fibres prepared by different spinning methods. Smart Mater Struct 16:1192–1197

    Article  Google Scholar 

  69. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  Google Scholar 

  70. Matsumoto H, Ishiguro T, Konosu Y, Minagawa M, Tanioka A et al (2012) Shape-memory properties of electrospun non-woven fabrics prepared from degradable polyester urethanes containing poly(x-pentadecalactone) hard segments. Eur Poly J 48(18):66–74

    Google Scholar 

  71. Mostafa G, Samaneh S, Manal I, Zahira Y, Wan R, Wan D (2012) New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem Eng 184:82

    Google Scholar 

  72. Jang WL, Yoo YT (2011) Preparation and performance of IPMC actuators with electrospun Nafion®–MWNT composite electrodes. Sens Actuat B-Chem 159:103

    Article  Google Scholar 

  73. Lei S, Chen DJ, Chen YQ (2011) surface acoustic wavehumidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films. Nanotechnology 22:265504

    Google Scholar 

  74. Laforgue A, Robitaille L, Mokrini A, Ajji A (2007) Macromol Mater Eng 292:1229

    Article  Google Scholar 

  75. Dong B, Gwee L, Cruz DS, Winey KI, Elabd YA (2010) Super proton conductive high-purity nafion nanofibers. Nano Lett 10:3785

    Article  Google Scholar 

  76. Zhang FH, Zhang ZC, Liu YJ, Leng JS (2014) Shape-memory properties of electrospun nafion nanofibers. Fibers Polym 15:534–539

    Article  Google Scholar 

  77. Chen HL, Cao XY, Zhang JN, Zhang JJ, Ma YM et al (2012) Electrospun shape-memory film with reversible fibrous structure. J Mater Chem 22:22387–22391

    Article  Google Scholar 

  78. Haase MF, Jeon H, Hough N, Kim JH, Stebe KJ, Lee D (2017) Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nat Commun 8:1234. https://doi.org/10.1038/s41467-017-01409-3

  79. Kai D, Tan MJ, Prabhakaran MP, Chan BQY, Liow SS, Ramakrishna S, Loh XJ (2016) Biocompatible electrically conductive nanofibers from inorganic-organic shape-memory polymers. Colloids Surf B: Biointerfaces 148:557–565. http://dx.doi.org/https://doi.org/10.1016/j.colsurfb.2016.09.035

  80. Carey J, Goldstein E, Cadogan D, Pacini L, Lou M (2000) Inflatable sunshield in space (ISIS) versus next generation space telescope (NGST) sunshield—a mass properties comparison. In: AIAA structures, structural dynamics and materials conference. Atlanta, GA

    Google Scholar 

  81. Dornheim M (1999) Inflatables structures taking to flight. Aviat Week Space Technol 150(4):60–62

    Google Scholar 

  82. Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L (2016) Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape-memory behavior. Polym Degrad Stab 132:97–108

    Google Scholar 

  83. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10(4):20–28

    Article  Google Scholar 

  84. Jing X, Mi HY, Huang HX, Turng LS (2016) Shape-memory thermoplastic polyurethane (TPU)/poly(epsilon-caprolactone) (PCL) blends as self-knotting sutures. J Mech Behav Biomed Mater 64:94–103

    Article  Google Scholar 

  85. Thakur S, Karak N (2015) A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J Chem 39(3):2146–2154

    Article  Google Scholar 

  86. Zheng Y, Dong R, Shen J, Guo S (2016) Tunable shape-memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone. ACS Appl Mater Interfaces 8(2):1371–1380

    Article  Google Scholar 

  87. Chen Y, Zhao X, Luo C, Shao Y, Yang M-B, Yin B (2020) A facile fabrication of shape-memory polymer nanocomposites with fast light-response and self-healing performance. Composites Part A 135:105931

    Google Scholar 

  88. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) Computer-aided design the status, challenges, and future of additive manufacturing. Comput Des. https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  89. Zhao Q et al (2015) Recent progress in shape-memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  90. Khoo ZX, Ee Mei Teoh J, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10, 3:103–122. https://doi.org/10.1080/17452759.2015.1097054

  91. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3d printing of electronic sensors. PLOS ONE 7(11):e49365. https://doi.org/10.1371/journal.pone.0049365

  92. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810

    Google Scholar 

  93. Hassan RU, Jo S, Seok J (2018) Fabrication of a functionally graded and magnetically responsive shape-memory polymer using a 3 D printing technique and its characterization. J Appl Polym Sci 135:45997

    Article  Google Scholar 

  94. Hua D, Zhang X, Ji Z, Yan C, Yu B, Li Y, Wang X, Zhou F (2018) 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators. J. Mater. Chem. C 6:2123–2131

    Article  Google Scholar 

  95. Liu W, Wu N, Pochiraju K (2018) Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts. Compos A Appl Sci Manuf 108:1–11

    Article  Google Scholar 

  96. Zhang Q, Yan D, Zhang K, Hu G (2015) Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci Rep 5:8936

    Article  Google Scholar 

  97. Zhao W, Zhang F, Leng J, Liu Y (2019) Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape-memory composites. Compos Sci Technol 184:107866

    Google Scholar 

  98. Yang H, Leow WR, Wang T, Wang J, Yu J, He K, Qi D, Wan C, Chen X (2017) 3D printed photoresponsive devices based on shape-memory composites. Adv Mater 29:1701627

    Article  Google Scholar 

  99. Su J-W, Gao W, Trinh K, Kenderes SM, Pulatsu ET, Zhang C, Whittington A, Lin M, Lin J (2019) 4D printing of polyurethane paint-based composites. Int J Smart Nano Mater 10:237–248

    Article  Google Scholar 

  100. Wan X, Zhang F, Liu Y, Leng J (2019) CNT-based electro-responsive shape-memory functionalized 3D printed nanocomposites for liquid sensors. Carbon 155:77–87

    Google Scholar 

  101. Wei H, Cauchy X, Navas IO, Abderrafai Y, Chizari K, Sundararaj U, Liu Y, Leng J, Therriault D (2019) Direct 3D printing of hybrid nanofiber-based nanocomposites for highly conductive and shape-memory applications. ACS Appl Mater Interfaces 11:24523–24532

    Google Scholar 

  102. Choong YYC, Maleksaeedi S, Eng H, Su P-C, Wei J (2017) Curing characteristics of shape-memory polymers in 3D projection and laser stereolithography. Virtual Phys Prototyp 12:77–84

    Article  Google Scholar 

  103. Zhang YF, Zhang N, Hingorani H, Ding N, Wang D, Yuan C, Zhang B, Gu G, Ge Q (2019) Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D Printing. Adv Funct Mater 29:1806698

    Article  Google Scholar 

  104. Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML (2017) Direct 4D printing via active composite materials. Sci Adv 3:e1602890

    Google Scholar 

  105. Zarek M, Layani M, Eliazar S, Mansour N, Cooperstein I, Shukrun E, Szlar A, Cohn D, Magdassi S (2016) 4D printing shape-memory polymers for dynamic jewellery and fashionwear. Virtual Phys Prototyp 11:263–270

    Article  Google Scholar 

  106. Wu H, Chen P, Yan C, Cai C, Shi Y (2019) Four-dimensional printing of a novel acrylate-based shape-memory polymer using digital light processing. Mater Des 171:107704

    Google Scholar 

  107. Yang C, Boorugu M, Dopp A, Ren J, Martin R, Han D, Choi W, Lee H (2019) 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Mater Horiz 6:1244–1250

    Article  Google Scholar 

  108. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S (2016) 3D printing of shape-memory polymers for flexible electronic devices. Adv Mater 28:4449–4454

    Article  Google Scholar 

  109. Yu K, Ritchie A, Mao Y, Dunn ML, Qi HJ (2015) Controlled sequential shape changing components by 3D printing of shape-memory polymer multimaterials. Procedia Iutam 12:193–203

    Google Scholar 

  110. Zhang Y, Huang L, Song H, Ni C, Wu J, Zhao Q, Xie T (2019) 4D printing of a digital shape-memory polymer with tunable high performance. ACS Appl Mater Interfaces 11:32408–32413

    Google Scholar 

  111. Inverardi N, Pandini S, Bignotti F, Scalet G, Marconi S, Auricchio F (2019) Sequential motion of 4D printed photopolymers with broad glass transition. Macromol Mater Eng 305:1900370

    Article  Google Scholar 

  112. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML (2016) Multimaterial 4D printing with tailorable shape-memory polymers. Sci Rep 6:3110

    Google Scholar 

  113. O’Donnell J, Ahmadkhanlou F, Yoon H-S, Washington G (2014) All-printed smart structures: a viable option? Active and passive smart structures and integrated systems. In: Liao W-H (ed) Proceedings of SPIE, vol 9057, p 905729

    Google Scholar 

  114. Keneth ES, Lieberman R, Rednor M, Scalet G (2020) Ferdinando auricchio and shlomomagdassi, multi-material 3D Printed shape- memory polymer with tunable melting and glass transition temperature activated by heat or light. Polymers 12:710. https://doi.org/10.3390/polym12030710

  115. Joshi S, Rawat K, Karunakaran C et al (2019) 4D printing of materials for the future: Opportunities and challenges. Appl Mater Today. https://doi.org/10.1016/j.apmt.2019.100490

  116. Ravnic DJ, Leberfinger AN, Koduru SV, Hospodiuk M, Moncal KK, Datta P, Dey M, Rizk E, Ozbolat IT (2017) Transplantation of bioprinted tissues and organs. Ann Surg 266:48–58. https://doi.org/10.1097/SLA.000000000000214]

    Article  Google Scholar 

  117. Khoo ZX, Teoh JEM, Liu Y, Chua CK, An J, Leong KF, Yeong WY (2015) 3D printingof smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10. http://dx.doi.org/https://doi.org/10.1080/17452759.2015.1097054

  118. Ramesh S, Usha C, Naulakha NK, Adithyakumar CR, Reddy MLK (2018) Advancements in the research of 4D printing—a review. In: IOP conference series material science engineering, p 376. http://dx.doi.org/https://doi.org/10.1088/1757-899X/376/1/012123

  119. Yu K, Ritchie A, Mao Y, Dunn ML, Qi HJ (2015) Controlled sequential shape changing components by 3D printing of shape- memory polymer multimaterials. Procedia IUTAM 12:193–203. http://dx.doi.org/10. 1016/j.piutam.2014.12.021

  120. An J, Chua CK, Mironov V (2016) A perspective on 4D bioprinting. Int J Bioprinting 2:3–5

    Article  Google Scholar 

  121. Inverardi N, Pandini S, Bignotti F, Scalet G, Marconi S, Auricchio F (2020) Sequential motion of 4D printed photopolymers with broad glass transition. Macromol Mater Eng 305:p1-11

    Article  Google Scholar 

  122. Meng H, Mohamadian H, Stubblefield M, Jerro D, Ibekwe S, Pang S-S, Li G (2013) Smart Mater Struct 22:093001

    Google Scholar 

  123. Hoeher R, Raidt T, Krumm C, Meuris M, Katzenberg F, Tiller JC (2013) Tunable multiple-shape-memory polyethylene blends. Macromol Chem Phys 214(23):2725–2732

    Article  Google Scholar 

  124. Lai S-M, You P-Y, Chiu YT, Kuo C (2017) W, Triple-shape-memory properties of thermoplastic polyurethane/olefin block copolymer/polycaprolactone blends. J Polym Res 24:10

    Article  Google Scholar 

  125. Chen T, Bilal OR, Shea K, Daraio C (2018) Harnessing bistability for directional propulsion of soft, untethered robots. Proc Natl Acad Sci USA 115:5698–5702

    Article  Google Scholar 

  126. Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML (2017) Direct 4D printing via active composite materials. Sci Adv 3(4):e1602890

    Google Scholar 

  127. Lendlein A, Jiang H, Jünger O et al (2005) Light-induced shape-memory polymers. Nature 434:879–882. https://doi.org/10.1038/nature03496

    Article  Google Scholar 

  128. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymercomposite. Compos Sci Technol 69, 13:2064–2068. https://doi.org/10.1016/j.compscitech.2008.08.016

  129. Leng J, Lv H, Liu Y, Du S (2007) Electroactive shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl Phys Lett 91,14:144105. https://doi.org/10.1063/1.2790497

  130. Leng J, Lv H, Liu Y, Du S (2008) Synergic effect of carbon black and short carbon fiber on shape-memory polymer actuation by electricity. J Appl Phys 104, 10:104917. https://doi.org/10.1063/1.3026724

  131. Schmidt AM (2006) Electromagnetic activation of shape-memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27, 14:1168–1172. https://doi.org/10.1002/marc.200600225

  132. Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape-memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105. https://doi.org/10.1063/1.1880448

  133. Leng J, Lv H, Liu Y, Du S (2008) Comment on, water-driven programable polyurethane shape-memory polymer: demonstration and mechanism. Appl Phys Lett 92, 20:206105. https://doi.org/10.1063/1.2936288

  134. Choong YYC, Maleksaeedi S, Eng H, Yu S, Wei J, Su P-C (2017) 4D printing of highperformance shape-memory polymer using stereolithography. Mater Des 126:219–225

    Google Scholar 

  135. Choong YYC, Maleksaeedi S, Eng H, Yu S, Su P-C, Wei J (2016) Curing characteristics of shape-memory polymers in 3D projection and laser stereo lithography. Virtual Phys Prototyp 1–8

    Google Scholar 

  136. Choong YYC, Maleksaeedi S, Eng H, Yu S, Wei J, Su PC (2020) High speed 4D printing of shape-memory polymers with nanosilica. Appl Mater Today 18:100515. 10.1016/j. apmt.2019.100515

    Google Scholar 

  137. Brennan M (2001) Suite of shape-memory polymers. Chem Eng News 79:6, 5. https://doi.org/10.1021/cen-v079n006.p005

  138. Monkman GJ, Taylor PM, Memory foams for robot grippers robots in unstructured environments. In: Proceedings of 5th international conference on advanced robotics. Pisa, pp 339–342

    Google Scholar 

  139. Tippets CA, Li Q, Fu Y, Donev EU, Zhou J, Turner SA, Jackson AMS, Ashby VS, Sheiko SS, Lopez R (2015) Dynamic optical gratings accessed by reversible shape-memory. ACS Appl Mater Interfaces 7, 26:14288–14293 (2015). https://doi.org/10.1021/acsami.5b02688

  140. Toensmeier PA (2009) Shape-memory polymers reshape product design. Plast Eng

    Google Scholar 

  141. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14):2255–2263. https://doi.org/10.1016/j.biomaterials.2007.01.030

  142. Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape-memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8(16):10070–10087. https://doi.org/10.1021/acsami.6b01295

  143. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical application. Science 296(5573):1673–1675. https://doi.org/10.1126/science.1066102. PMID 11976407

  144. Monkman GJ (2000) Advances in shape-memory polymer actuation. Mechatronics 10(4/5):489–498. https://doi.org/10.1016/S0957-4158(99)00068-9

  145. Fritzsche N, Pretsch T (2014) Programming of temperature-memory onsets in a semicrystalline polyurethane elastomer. Macromolecules 47(17):5952–5959. https://doi.org/10.1021/ma501171p

  146. Voit W, Ware T, Gall K (2010) Radiation crosslinked shape-memory polymers. Polymer 51(15):3551. https://doi.org/10.1016/j.polymer.2010.05.049

  147. Leverant C, Leo S-Y, Cordoba MA, Zhang Y, Charpota N, Taylor C, Jiang P (2019) Reconfigurable anti-counterfeiting coatings enabled by macroporous shape-memory polymers. ACS Appl Polym Mater 1:36–46. https://doi.org/10.1021/acsapm.8b00021

  148. Ecker M, Pretsch T (2014) Multifunctional poly(ester urethane) laminates with encoded information. RSC Adv 4(1):286–292. https://doi.org/10.1039/C3RA45651J

  149. Ecker M, Pretsch T (2014) Novel design approaches for multifunctional information carriers. RSC Adv 4(87):46680–46688. https://doi.org/10.1039/C4RA08977D

  150. Ping P, Wang W, Chen X, Jing X (2005) Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6(2):587−592

    Google Scholar 

  151. Zhang ZX, Liao F, He ZZ Yang, JH, Huang T, Zhang N, Wang Y, Gao XL (2015) Tunable shape-memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide). Smart Mater Struct 24, 12:125002

    Google Scholar 

  152. Xie T, Xiao X, Cheng YT (2009) Revealing triple-shape-memory effect by polymer bilayers. Macromol Rapid Commun 30(21):1823–1827

    Article  Google Scholar 

  153. Wang WX, Liu D, Lu L, Chen H, Gong T, Lu J, Zhou S (2016) The improvement of shape-memory function of poly(εcaprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J Mater Chem A 4(16):5984–5992

    Google Scholar 

  154. Zhang S, Yu Z, Govender T, Luo H, Li B (2008) A novel supramolecular shape-memory material based on partial α-CDPEG inclusion complex. Polymer 49(15):3205–3210

    Google Scholar 

  155. Small W, Singhal P, Wilson TS, Maitland DJ (2008) Biomedical applications of thermally activated shape-memory polymers. J Mater Chem 20:3356–3366

    Article  Google Scholar 

  156. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676

    Article  Google Scholar 

  157. Goh YF, Shakir I, Hussain R (2013) Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 48:3027–3054

    Article  Google Scholar 

  158. Prabhakaran MP, Venugopal J, Ghasemi-Mobarakeh L, Kai D, Jin G, Ramakrishna S (2012) Stem cells and nanostructures for advanced tissue regeneration. In: Jayakumar R, Nair SV (eds) Biomedical applications of polymeric nanofibers. Springer, Berlin, pp 21–62

    Google Scholar 

  159. Kubinova S, Sykova E (2010) Nanotechnologies in regenerative medicine. Minim Invasive Ther Allied Technol 19:144–156

    Article  Google Scholar 

  160. Jin GR, Prabhakaran MP, Kai D, Annamalai SK, Arunachalam KD, Ramakrishna S (2013) Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 34:724–734

    Article  Google Scholar 

  161. Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S (2012) Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23:10

    Article  Google Scholar 

  162. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE et al (2012) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362

    Article  Google Scholar 

  163. Yang F, Murugan R, Ramakrishna S, Wang X, Ma Y, Wang S (2004) Fabrication of nanostructured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900

    Article  Google Scholar 

  164. Woo KM, Jun JH, Chen VJ, Seo JY, Baek JH, Ryoo HM et al (2007) Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 28:335–343

    Article  Google Scholar 

  165. Tseng LF, Mather PT, Henderson JH (2013) Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomater 9:8790–8801

    Article  Google Scholar 

  166. Stimuli-Responsive Micro-Reservoirs for release of Encapsulants, S Surwade, K Madgula - US Patent App.16/513, 220 (2020)

    Google Scholar 

Download references

Acknowledgements

One of the authors, VSP, acknowledges the  support of National Research Council Senior Research Associate Fellowship (National Academy of Science, Washington, DC, USA, Energy Directorate, Air Force Research Laboratory, Kirtland Air Force Base, NM, and Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, OH, USA). KM acknowledges the support of her supervisor, Sumedh P Surwade, CEO and Founder, SAS Nanotechnologies LLC, for working toward polymer nanocomposite self-healing materials.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madgula, K., Puli, V.S. (2022). Recent Progress in Synthesis Methods of Shape-Memory Polymer Nanocomposites. In: Maurya, M.R., Sadasivuni, K.K., Cabibihan, JJ., Ahmad, S., Kazim, S. (eds) Shape Memory Composites Based on Polymers and Metals for 4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-030-94114-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94114-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94113-0

  • Online ISBN: 978-3-030-94114-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics