Skip to main content
Log in

Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

The unsteady characteristics of bubble dynamics inside the air reactor within the first 0–40 s of reforming has always been studied for defining the design criteria of the reactor. In the study, a temporal aspect of the hydrodynamics and chemical kinetics in the reactor of a chemical looping reforming system in form of volume fraction contours of solid species and molar fraction of H2O has been numerically simulated by considering manganese (Mn) and iron (Fe) based metal oxides as oxygen carriers. The Finite Volume Method based approach has been employed to simulate the steam reactor model by encompassing it as a fluidized bed reactor. The granular flow under kinetic theory has been employed using a multiphase Eulerian-based approach for both gas and solid phases in the form of a shrinking core model. An influence of various operating parameters such as particle size of the oxygen carriers, steam inlet velocity, and temperature of the steam reactor on an overall conversion rate of iron-based oxide (FeO) and manganese-based oxide (MnO). The maximum steam conversion rate for FeO and MnO was observed at 32% and 34% at 0.6 m/s steam velocity, 48% and 60% at a maximum temperature of 1273 K, and 47% and 64% at a particle size of 100 μm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Acceleration (m·s−2)

a x :

Volume fraction for phase x (—)

D :

Mass diffusion flux (kg·m−2·s−1)

F :

Chemical reaction formation rate (s−1)

g :

Gravity (m·s−2)

G :

Interaction force between phases (N)

ΔH f :

Heat released for fuel (kJ·mol−1)

h :

Enthalpy (kJ·kg−1·K−1)

i :

Spices

k :

Thermal conductivity (W·m−1·K−1)

xy :

Mass transfer from the xth phase to the yth phase (kg·s−1)

P :

Pressure (N·m−2)

Q :

Heat transfer (kJ)

R :

Heterogeneous reaction rate (—)

T a :

Source term in continuity equation

\({\overrightarrow v _x}\) :

Velocity of the phase x (m·s−1)

\({\overrightarrow v _{yx}},{\overrightarrow v _{xy}}\) :

Interphase velocity (m·s−1)

\(\overrightarrow G \) :

Force (N)

\({\overrightarrow G _{yx}}\) :

Interactive force between phases x and y (N)

\({\overrightarrow G _x}\) :

External body force for phase x (N)

\({\overrightarrow G _{\rm{L}}}\) :

Lift force (N)

\({\overrightarrow G _{\rm{v}}}\) :

Virtual mass force (N)

v :

Velocity (m·s−1)

x :

Phase

y :

Phase

z :

Phase

V:

Virtual

L:

Lift

ρ :

Density (kg·m−3)

μ :

Dynamic viscosity (N·s·m−2)

τ :

Stress-strain tensor

Σ :

Algebraic sum

▽:

Derivative operator

:

Partial differential operator

θ :

Temperature gradient

AR:

Air reactor

CLR:

Chemical looping reforming

CLSR:

Chemical looping steam reforming

CSP:

Concentrated solar power

FR:

Fuel reactor

FVA:

Finite volume approach

RVSPA:

Rapid vacuum pressure swing absorption

SMR:

Steam methane reforming

SR:

Steam reactor

TGA:

Thermal gravimetric analysis

References

  • Adánez, J., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A., Palacios, J. M. 2004. Selection of oxygen carriers for chemical-looping combustion. Energ Fuel, 18: 371–377.

    Article  Google Scholar 

  • Antzara, A., Heracleous, E., Bukur, D. B., Lemonidou, A. A. 2015. Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture. Int J Greenh Gas Con, 32: 115–128.

    Article  Google Scholar 

  • Bhavsar, S., Tackett, B., Veser, G. 2014. Evaluation of iron- and manganese-based mono- and mixed-metallic oxygen carriers for chemical looping combustion. Fuel, 136: 268–279.

    Article  Google Scholar 

  • Bhosale, R., AlMomani, F., Takalkar, G. 2020. Thermodynamic analysis of solar-driven chemical looping steam methane reforming over Cr2O3/Cr redox pair. Int J Hydrog Energ, 45: 10370–10380.

    Article  Google Scholar 

  • Bischi, A., Langørgen, Ø., Morin, J. X., Bakken, J., Ghorbaniyan, M., Bysveen, M., Bolland, O. 2012. Hydrodynamic viability of chemical looping processes by means of cold flow model investigation. Appl Energ, 97: 201–216.

    Article  Google Scholar 

  • Capocelli, M., Luberti, M., Inno, S., D’Antonio, F., Di Natale, F., Lancia, A. 2019. Post-combustion CO2 capture by RVPSA in a large-scale steam reforming plant. J CO2 Util, 32: 53–65.

    Article  Google Scholar 

  • Chiesa, P., Lozza, G., Malandrino, A., Romano, M., Piccolo, V. 2008. Three-reactors chemical looping process for hydrogen production. Int J Hydrog Energ, 33: 2233–2245.

    Article  Google Scholar 

  • Christopher, K., Dimitrios, R. 2012. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energ Environ Sci, 5: 6640.

    Article  Google Scholar 

  • Clift, R., Grace, J. R. 1985. Continuous bubbling and slugging. Fluidization, 73–132.

    Google Scholar 

  • Coelho, B., Oliveira, A. C., Mendes, A. 2010. Concentrated solar power for renewable electricity and hydrogen production from water—a review. Energ Environ Sci, 3: 1398.

    Article  Google Scholar 

  • Deng, Z., Xiao, R., Jin, B., Song, Q. 2009. Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrier. Int J Greenh Gas Con, 3: 368–375.

    Article  Google Scholar 

  • Dindi, A., Quang, D. V., Vega, L. F., Nashef, E., Abu-Zahra, M. R. M. 2019. Applications of fly ash for CO2 capture, utilization, and storage. J CO2 Util, 29: 82–102.

    Article  Google Scholar 

  • Fan, L. S., Zeng, L., Wang, W., Luo, S. 2012. Chemical looping processes for CO2 capture and carbonaceous fuel conversion—prospect and opportunity. Energ Environ Sci, 5: 7254–7280.

    Article  Google Scholar 

  • Gelderbloom, S. J., Gidaspow, D., Lyczkowski, R. W. 2003. CFD simulations of bubbling/collapsing fluidized beds for three Geldart groups. AIChE J, 49: 844–858.

    Article  Google Scholar 

  • Gidaspow, D. 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. Academic Press.

  • Gunn, D. J. 1978. Transfer of heat or mass to particles in fixed and fluidised beds. Int J Heat Mass Tran, 21: 467–476.

    Article  Google Scholar 

  • Harichandan, A. B., Shamim, T. 2014. CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system. Energ Convers Manage, 86: 1010–1022.

    Article  Google Scholar 

  • He, L., Parra, J. M. S., Blekkan, E. A., Chen, D. 2010. Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming. Energ Environ Sci, 3: 1046.

    Article  Google Scholar 

  • Hossain, M. M., de Lasa, H. I. 2008. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chem Eng Sci, 63: 4433–4451.

    Article  Google Scholar 

  • Huang, Z., He, F., Zhao, K., Feng, Y., Zheng, A., Chang, S., Zhao, Z., Li, H. 2014. Natural iron ore as an oxygen carrier for biomass chemical looping gasification in a fluidized bed reactor. J Therm Anal Calorim, 116: 1315–1324.

    Article  Google Scholar 

  • Isarapakdeetham, S., Kim-Lohsoontorn, P., Wongsakulphasatch, S., Kiatkittipong, W., Laosiripojana, N., Gong, J., Assabumrungrat, S. 2020. Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3. Int J Hydrog Energ, 45: 1477–1491.

    Article  Google Scholar 

  • Johansson, E., Mattisson, T., Lyngfelt, A., Thunman, H. 2006. A 300 W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel, 85: 1428–1438.

    Article  Google Scholar 

  • Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Kim, S. H., Park, C. S. 2010. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production. Int J Hydrog Energ, 35: 12246–12254.

    Article  Google Scholar 

  • Khan, M. N., Shamim, T. 2017. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system. Int J Hydrog Energ, 42: 15745–15760.

    Article  Google Scholar 

  • Khan, M. N., Shamim, T. 2019. Techno-economic assessment of a chemical looping reforming combined cycle plant with iron and tungsten based oxygen carriers. Int J Hydrog Energ, 44: 11525–11534.

    Article  Google Scholar 

  • Kothari, R., Buddhi, D., Sawhney, R. L. 2008. Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sust Energ Rev, 12: 553–563.

    Article  Google Scholar 

  • Larring, Y., Pishahang, M., Sunding, M. F., Tsakalakis, K. 2015. Fe-Mn based minerals with remarkable redox characteristics for chemical looping combustion. Fuel, 159: 169–178.

    Article  Google Scholar 

  • Lisbona, P., Martínez, A., Romeo, L. M. 2013. Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture. Appl Energ, 101: 317–322.

    Article  Google Scholar 

  • Lu, H., Gidaspow, D., Bouillard, J., Liu, W. 2003. Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow. Chem Eng J, 95: 1–13.

    Article  Google Scholar 

  • Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N. 1984. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140: 223–256.

    Article  MATH  Google Scholar 

  • Mattisson, T., Järdnäs, A., Lyngfelt, A. 2003. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen application for chemical-looping combustion. Energ Fuel, 17: 643–651.

    Article  Google Scholar 

  • Mattisson, T., Lyngfelt, A., Cho, P. 2001. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel, 80: 1953–1962.

    Article  Google Scholar 

  • Medeiros, R., Melo, V., Melo, D. M. A., Macedo, H. P., Moure, G. T., Adánez-Rubio, I., Melo, M., Adánez, J. 2020. Double perovskite (La2−xCa-Bax)NiO4 oxygen carriers for chemical looping reforming applications. Int J Hydrog Energ, 45: 1681–1696.

    Article  Google Scholar 

  • Momirlan, M., Veziroglu, T. 1999. Recent directions of world hydrogen production. Renew Sust Energ Rev, 3: 219–231.

    Article  Google Scholar 

  • Mosavati, B., Mosavati, M., Kowsary, F. 2013. Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace. Int Commun Heat Mass Trans, 45: 130–136.

    Article  Google Scholar 

  • Mosavati, B., Mosavati, M., Kowsary, F. 2016. Inverse boundary design solution in a combined radiating-free convecting furnace filled with participating medium containing specularly reflecting walls. Int Commun Heat Mass Trans, 76: 69–76.

    Article  Google Scholar 

  • Nazir, S. M., Morgado, J. F., Bolland, O., Quinta-Ferreira, R., Amini, S. 2018. Techno-economic assessment of chemical looping reforming of natural gas for hydrogen production and power generation with integrated CO2 capture. Int J Greenh Gas Con, 78: 7–20.

    Article  Google Scholar 

  • Ranganathan, R. V., Jony, B., Fondriest, S. M., Liu, Z., Wang, R., Uddi, M. 2019. Plasma-catalysis chemical looping CH4 reforming with water splitting using ceria supported Ni based La-perovskite nano-catalyst. J CO2 Util, 32: 11–20.

    Article  Google Scholar 

  • Richter, H. J., Knoche, K. F. 1983. Reversibility of combustion processes. ACS Sym Ser, 71–85.

    Google Scholar 

  • Rydén, M., Leion, H., Mattisson, T., Lyngfelt, A. 2014. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling. Appl Energ, 113: 1924–1932.

    Article  Google Scholar 

  • Schaeffer, D. G. 1987. Instability in the evolution equations describing incompressible granular flow. J Differ Equations 66: 19–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Shimura, K., Yoshida, H. 2011. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energ Environ Sci, 4: 2467.

    Article  Google Scholar 

  • Siriwardane, R., Tian, H., Richards, G., Simonyi, T., Poston, J. 2009. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energ Fuel, 23: 3885–3892.

    Article  Google Scholar 

  • Siriwardane, R., Tian, H., Simonyi, T., Poston, J. 2013. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion. Fuel, 108: 319–333.

    Article  Google Scholar 

  • Sorgenfrei, M., Tsatsaronis, G. 2014. Design and evaluation of an IGCC power plant using iron-based syngas chemical-looping (SCL) combustion. Appl Energ, 113: 1958–1964.

    Article  Google Scholar 

  • Stenberg, V., Rydén, M., Mattisson, T., Lyngfelt, A. 2018. Exploring novel hydrogen production processes by integration of steam methane reforming with chemical-looping combustion (CLC-SMR) and oxygen carrier aided combustion (OCAC-SMR). Int J Greenh Gas Con, 74: 28–39.

    Article  Google Scholar 

  • Syamlal, M., O’Brien, T. J. 1989. Computer simulation of bubbles in a fluidized bed. AIChE Sym Ser, 85: 22–31.

    Google Scholar 

  • Syamlal, M., Rogers, W., O’Brien, T. J. 1993. MFIX documentation theory guide (No. DOE/METC-94/1004). USDOE Morgantown Energy Technology Center, WV (United States).

    Book  Google Scholar 

  • Symonds, R. T., Sun, Z., Ashrafi, O., Navarri, P., Lu, D. Y., Hughes, R. W. 2019. Ilmenite ore as an oxygen carrier for pressurized chemical looping reforming: Characterization and process simulation. Int J Greenh Gas Con, 81: 240–258.

    Article  Google Scholar 

  • Thursfield, A., Murugan, A., Franca, R., Metcalfe, I. S. 2012. Chemical looping and oxygen permeable ceramic membranes for hydrogen production—a review. Energ Environ Sci, 5: 7421.

    Article  Google Scholar 

  • Zafar, Q., Mattisson, T., Gevert, B. 2006. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energ Fuel, 20: 34–44.

    Article  Google Scholar 

  • Zhang, H., Xiao, R., Song, M., Shen, D., Liu, J. 2014. Hydrogen production from bio-oil by chemical looping reforming. J Therm Anal Calorim, 115: 1921–1927.

    Article  Google Scholar 

  • Zhang, X., Jin, H. 2013. Thermodynamic analysis of chemical-looping hydrogen generation. Appl Energ, 112: 800–807.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atal Harichandan.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavda, A., Mehta, P. & Harichandan, A. Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture. Exp. Comput. Multiph. Flow 4, 360–376 (2022). https://doi.org/10.1007/s42757-021-0105-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-021-0105-7

Keywords

Navigation