Skip to main content
Log in

Revisiting the Nature of Phosphorus Pools in Chilean Volcanic Soils as a Basis for Arbuscular Mycorrhizal Management in Plant P Acquisition

  • Review
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

This review covers the nature, characteristics, and reactivity of soil organic matter (SOM) in volcanic soils and the phosphorus (P) accumulation mainly via the formation of stable complexes with organic and inorganic constituents to form P-containing macromolecules derived from both pedogenesis and fertilization. With the time, P accumulates as organic and inorganic compounds with differing lability, but the bulk appears to be recalcitrant. Chilean volcanic soils follow this same trend, subsequently having detrimental characteristics for plant growth, like the highly humified SOM and high P-sorption capacity. In addition, certain Chilean volcanic soils have high acidity, concomitant with a high exchangeable Al. As a result of the continuous application of P fertilizers, together with a low P efficiency of plant root acquisition, a “P reservoir” has built up, giving rise to the so-called residual P. This residual P consists of the inorganic and organic P, as macromolecular structures representing the cumulative average of several decades worth of agronomic P usage. Root modifications are an essential biological intervention to deal with this P accumulation. The general root modifications that are required to mobilize the residual P are discussed in the context of biochemical modifications (root exudations) and the symbiotic alterations by arbuscular mycorrhizal (AM) fungi. For a more efficient utilization of this accumulated P, however, it is essential to investigate the chemical nature and lability of these P forms in order to determine their capacity for plant acquisition and utilization. In this context, attention is focused on P fractionation and on some 31P-NMR analysis of residual P constituents in Andisols. The major root trait evaluated and discussed here is the AM association, which is able to be extensively modified by management practices. Finally, some potential practices to avoid the excessive application of P fertilizers in volcanic soils by using technologies of P recycling, management of AM fungal populations, or agricultural management for mobilizing the accumulated residual P are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43:2427–2431

    Article  CAS  Google Scholar 

  • Aguilera P, Cornejo P, Borie F, Barea JM, von Baer E, Oehl F (2015) Diversity of arbuscular mycorrhizal fungi associated to Triticum aestivum L. plants growing in an andosol with phytotoxic aluminum levels. Agric Ecosyst Environ 186:178–184

    Article  CAS  Google Scholar 

  • Aguilera P, Marín C, Oehl F, Godoy R, Borie F, Cornejo P (2017) Selection of aluminum tolerant cereal genotypes strongly influences the arbuscular mycorrhizal fungal communities in an acidic andosol. Agric Ecosyst Environ 246:86–93

    Article  CAS  Google Scholar 

  • Aguilera P, Larsen J, Borie F, Berrios D, Tapia C, Cornejo P (2018) New evidences on the contribution of arbuscular mycorrhizal fungi inducing Al tolerance in wheat. Rhizosphere 5:43–50

    Article  Google Scholar 

  • Alvear M, Pino M, Castillo C, Trasar-Cepeda C, Gil Sotres F (2006) Effect of no-tillage on some biological activities in an Alfisol from southern Chile. J Soil Sci Plant Nutr 6:38–53

    Google Scholar 

  • Baker RT (1977) Humic acid associated organic phosphate. N Zeal J Soil Sci 20:439–441

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2013) Microbial interactions in the rhizosphere. In: de Bruijn F (ed) Molecular microbial ecology of the rhizosphere. Willey-Blackwell, USA, pp 29–44

    Chapter  Google Scholar 

  • Besoain E (1985) Mineralogía de los suelos volcánicos del centro-sur de Chile. In: Tosso J (ed) Suelos Volcánicos de Chile. INIA, pp 107–302

  • Borie F, Barea JM (1985) Occurrence of lipid-P in volcanic ash derived soils of Chile. Agrochimica 28:317–324

    Google Scholar 

  • Borie F, Fuentealba R (1982) Biochemistry of soils derived from volcanic ashes. II. Urease activity. Agric Tec (Chile) 42:135–142

    CAS  Google Scholar 

  • Borie F, Rubio R (1999) Effects of arbuscular mycorrhizae and liming on growth and mineral acquisition of aluminum-tolerant and Al-sensitive barley cultivars. J Plant Nutr 22:121–137

    Article  CAS  Google Scholar 

  • Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Bot 60:69–78

    Article  Google Scholar 

  • Borie F, Zunino H (1983) Organic matter-phosphorus associations as a sink in P-fixation processes in allophanics soils of Chile. Soil Biol Biochem 15:599–603

    Article  CAS  Google Scholar 

  • Borie F, Zunino H, Martínez L (1989) Macromolecule-P associations and inositol phosphates in some chilean volcanic soils of temperate regions. Commun Soil Sci Plant Anal 20:1881–1894

    Article  CAS  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soils characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 28:253–261

    Article  Google Scholar 

  • Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. J Soil Sci Plant Nutr 8:9–18

    Google Scholar 

  • Bovill WD, Huang CY, McDonald GK (2013) Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop Pasture Sci 64:179–198

    Article  Google Scholar 

  • Briceño M, Escudey M, Galindo G, Borchard D, Chang A (2004) Characterization of chemical phosphorus forms in volcanic soils using 31P-NMR spectroscopy. Commun Soil Sci Plant Anal 35:1323–1335

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:33–22

    Article  CAS  Google Scholar 

  • Campos P, Borie F, Cornejo P, López-Raez JA, López-García A, Seguel A (2018) Phosphorus acquisition efficiency related to root traits: is mycorrhizal Symbiosis a key factor to wheat and barley cropping? Front Plant Sci 9:752

    Article  PubMed  PubMed Central  Google Scholar 

  • Casanova M, Salazar O, Seguel O, Luzio W (2013) The soils of Chile. Springer Verlag, London

    Book  Google Scholar 

  • Castillo C, Rubio R, Rouanet JL, Borie F (2006) Early effect of tillage and crop rotation in arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43:83–92

    Article  Google Scholar 

  • Castillo CG, Borie F, Oehl F, Sieverding E (2016) Arbuscular mycorrhizal fungi biodiversity: prospecting in southern central zone of Chile. A Review. J Soil Sci Plant Nutr 16:11–24

    Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  PubMed  Google Scholar 

  • Cornejo P, Rubio R, Borie F (2009) Mycorrhizal propagules persistence in a succession of cereals in an Andisol disturbed and undisturbed, fertilized with two nitrogen sources. Chilean J Agric Res 69:426–434

    Article  Google Scholar 

  • Cornejo P, Meier S, Durán P, García S, Ferrol N, Borie F (2017) Contribution of Bradford-reactive soil protein to the copper sequestration in a cu-polluted soil using Oenothera picensis. J Soil Sci Plant Nutr 17:1–8

    Google Scholar 

  • Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in Central Chile. Soil Tillage Res 113:11–18

    Article  Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties and management of volcanic soils. Adv Agron 82:113–182

    Article  CAS  Google Scholar 

  • Delgado M, Zuñiga-Feest A, Alvear M, Borie F (2013) The effect of phosphorus on cluster-root formation and functioning of Embothrium coccineum (R. Et J. Forst.). Plant Soil 373:765–773

    Article  CAS  Google Scholar 

  • Delgado M, Suriyagoda L, Zuñiga-Feest A, Borie F, Lambers H (2014) Divergent functioning of Proteaceae species: the south American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. Funct Ecol 28:1356–1366

    Article  Google Scholar 

  • Dubé F, Stolpe N (2016) SOM and biomass C stocks in degraded and undisturbed Andean and coastal Nothofagus forests of southwestern South America. Forests 7:320–339

    Article  Google Scholar 

  • Escudey M, Galindo G, Förster JE, Briceño M, Díaz P, Chang A (2001) Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Commun Soil Sci Plant Anal 32:601–616

    Article  CAS  Google Scholar 

  • Etcheverria P, Huygens D, Godoy R, Borie F, Boeckx P (2009) Arbuscular mycorrhizal fungi contribute to C-13 and N-15 enrichment of soil organic matter in forest soils. Soil Biol Biochem 41:858–861

    Article  CAS  Google Scholar 

  • George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS, Bol R, Cabugao KG, Celi L, Cotner JB, Feng G, Goll DS, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson AE, Tamburini F, Shand CA, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Mezeli MM, Almås ÅR, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley CA, Bruulsema TW, Ciais P, Cozzolino V, Duran PC, Mora ML, de Menezes AB, Dodd RJ, Dunfield K, Engl C, Frazão JJ, Garland G, González Jiménez JL, Graca J, Granger SJ, Harrison AF, Heuck C, Hou EQ, Johnes PJ, Kaiser K, Kjær HA, Klumpp E, Lamb AL, Macintosh KA, Mackay EB, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón CP, Nelson LA, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith AC, Smits MM, Sobarzo JA, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth PM (2018) Organic phosphorus in the terrestrial environments: a perspective on the state of the art and future priorities. Plant Soil 427:191–208

    Article  CAS  Google Scholar 

  • Gerke G (1997) Aluminum and iron (III) species in the soil solution including organic complexes with citrate and humic substances. Z Pflanzenernahr Bodenkd 160:427–432

    Article  CAS  Google Scholar 

  • Gerke J (2010) Humic(organic matter)-Al(Fe)-phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate. Soil Sci 175:417–425

    Article  CAS  Google Scholar 

  • Gerke J (2015) Phytate (inositol Hexakisphosphate) in soil and phosphate from inositol phosphates by higher plants. A review. Plants 4:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • González-Chávez MC, Carrillo-González M, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  PubMed  Google Scholar 

  • Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedley H, Steward J, Chauhuan B (1982) Changes in organic and inorganic phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Hernández-Soriano MC (2012) The role of aluminum-Organo complexes in soil organic matter dynamics. In: Hernández-Soriano MC (ed) Soil health and land use management. InTech.com Europe, Croatia, pp 17–32

    Chapter  Google Scholar 

  • Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748

    Article  CAS  Google Scholar 

  • Hong JK, Yamane I (1981) Distribution of inositol phosphate in the molecular size fractions of humic and fulvic acid fractions. Soil Sci Plant Nutr 27:295–303

    Article  CAS  Google Scholar 

  • Irving GCJ, Cosgrove DJ (1982) The use of gas liquid chromatography to determine the proportions of inositol isomers present as pentakis- and hexakis-phophates in alkaline extracts of soils. Commun Soil Sci Plant Anal 13:957–967

    Article  CAS  Google Scholar 

  • Liebish L, Keller F, Huguenin-Ellie O, Frossard E, Oberson A, Büneman EK (2014) Seasonal dynamics and turnover of microbial phosphorus in permanent grassland. Biol Fertil Soils 50:465–475

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Ma Q, Rengel Z, Rose TJ (2009) The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: a review. Aust J Soil Res 47:19–32

    Article  Google Scholar 

  • Madeira M, Füleky G, Auxtero E (2007) Phosphate sorption of European volcanic soils. In: Bartoli F, Buurman P, Arnalds O, Stoops G, Garcia-Rodeja E (eds) Soils of Volcanic Regions of Europe. Springer, Verlag, pp 353–367

    Chapter  Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, van Ginkel M, González RM, Rajaram S, Molina E, Vlek PLG (2000) Traits associated with improved P-efficiency in CIMMYT’s semodwarf spring wheat grown in an acid andisol in Mexico. Plant Soil 221:189–204

    Article  CAS  Google Scholar 

  • Marín C, Aguilera P, Cornejo P, Godoy R, Oehl F, Palfner G, Boy J (2016) Arbuscular mycorrhizal assemblages along contrasting andean forest of southern Chile. J Soil Sci Plant Nutr 16:916–929

    Google Scholar 

  • Mathew RP, Feng Y, Githinji L, Ankumah R, Balkcom KS (2012) Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Appl Environ Soil Sci 2012:548620 10 pages

    Article  Google Scholar 

  • McLaren TI, Smernik RJ, McLaughlin MJ, McBeath TM, Kirby JK, Simpson RJ et al (2015) Complex forms of soil organic phosphorus- a major component of soil phosphorus. Environ Sci Technol 49:13238–13245

    Article  CAS  PubMed  Google Scholar 

  • Medina J, Monreal C, Chabot D, Meier S, González ME, Morales E, Parillo R, Borie F, Cornejo P (2017) Microscopic and spectroscopic characterization of humic substances from a compost amended copper contaminated soil: Main features and their potential effects on cu immobilization. Environ Sci Pollut Res 24:14104–14116

    Article  CAS  Google Scholar 

  • Mendoza J, Borie F (1998) The effects of glomus etunicatum inoculation on aluminum, phosphorus, calcium and magnesium uptake in two barley genotypes with different aluminum-tolerance. Commun Soil Sci Plant Anal 9:681–695

    Article  Google Scholar 

  • Menezes-Blackburn D, Giles C, Darch T, George TS et al (2018) Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil 417:5–26

    Article  CAS  Google Scholar 

  • Mora ML, Canales J (1995) Interactions of humic substances with allophanic compounds. Commun Soil Sci Plant Anal 26:2805–2817

    Article  CAS  Google Scholar 

  • Mora M, Jarvis S, Cartes P (2006) Soil Al availability in Andisols of southern Chile and its effects in forage production and animal metabolism. Soil Use Manag 22:95–101

    Article  Google Scholar 

  • Morales A, Alvear M, Valenzuela E, Castillo C, Borie F (2011) Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertilizer. J Soil Sci Plant Nutr 11:89–103

    Article  Google Scholar 

  • Neculman R, Rumpel C, Matus F, Godoy R, Steffens M, Mora ML (2013) Organic matter stabilization in two Andisols of contrasting age under temperate rain forest. Biol Fertil Soils 49:681–689

    Article  CAS  Google Scholar 

  • Nichols KA (2010) Glomalin production and accumulation in soilless pot cultures. Can J Soil Sci 90:567–570

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding PE, Mäder D, Dubois K, Ineichen T, Boller WA (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Pajares N, Gallardo JF, Masciadaro B, Ceccanti B, Etchevers JD (2011) Enzyme activity as an indicator of soil quality changes in degraded cultivated acrisols in the Mexican trans-volcanic belt. Land Degrad Dev 22:373–381

    Article  Google Scholar 

  • Panichini M, Neculman R, Godoy R, Arancibia-Miranda N, Matus F (2017) Understanding carbon storage in volcanic soils under selectively logged temperate rainforests. Geoderma 302:76–88

    Article  CAS  Google Scholar 

  • Pardo MT, Guadalix ME, García-González MT (1992) Effect of pH and background electrolyte on P sorption by variable charge soils. Geoderma 54:275–284

    Article  CAS  Google Scholar 

  • Parfitt RL (1989) Phosphate reactions with natural allophane, ferrihydrite and goethite. Eur J Soil Sci 40:359–369

    Article  CAS  Google Scholar 

  • Parfitt RL (2009) Allophane and imogolite: role in soil biochemical processes. Clay Miner 44:135–155

    Article  CAS  Google Scholar 

  • Peirano P, Borie G, Aguilera M (1987) Biochemistry of soils derived from volcanic ashes. V. Determination of polyphenoloxidases. Agric Tecn (Chile) 47:235–239

    Google Scholar 

  • Pigna M, Violante A (2003) Adsorption of sulphate and phosphate in Andisols. Commun Soil Sci Plant Anal 34:2099–2113

    Article  CAS  Google Scholar 

  • Redel Y, Rubio R, Godoy R, Borie F (2008) Phosphorus fractions and phosphatase activity in an Andisol sampled under different forest ecosystems. Geoderma 145:216–221

    Article  CAS  Google Scholar 

  • Redel Y, Escudey M, Alvear M, Conrad J, Borie F (2011) Effects of tillage and crop rotation on chemical phosphorus and some related biological activities in a Chilean Ultisol. Soil Use Manag 27:221–228

    Article  Google Scholar 

  • Redel Y, Escudey M, Alvear M, Conrad J, Borie F (2015) Effects of land use change on P bioavailability determined by chemical fractionation and 31P-NMR spectroscopy in a Nothofagus forest and adjacent grassland. J Soil Sci Plant Nutr 15:1061–1070

    Google Scholar 

  • Rohyadi A (2005) Spore germination and colonization of Gigaspora margarita as influenced by aluminium concentration. J Microbiol Indones 10:71–74

    Google Scholar 

  • Rose TJ, Wissuwa M (2012) Rethinking internal phosphorus utilization efficiency. A new approach is needed to improve PUE in grain crops, 1st edn. Elsevier Inc., Burlington

    Google Scholar 

  • Rose TS, Rose MT, Tanaka JP, Wissuwa M (2010) Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crop Res 119:154–160

    Article  Google Scholar 

  • Rubio R, Moraga A, Borie F (1990) Acid phosphatase activity and vesicular mycorrhizal infection associated with roots of four wheat cultivars. J Plant Nutr 13:585–598

    Article  CAS  Google Scholar 

  • Rubio R, Borie F, Schalchli C, Castillo C, Azcón R (2003) Occurrence and effects of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Appl Soil Ecol 23:245–255

    Article  Google Scholar 

  • Rufyikiri G, Declerck C, Dufey JE, Delvaux B (2000) Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants. New Phytol 148:343–352

    Article  CAS  Google Scholar 

  • Schnitzer MA (2000) Lifetime perspective on the chemistry of soil organic matter. Adv Agron 68:1–58

    CAS  Google Scholar 

  • Seguel A, Medina J, Rubio R, Cornejo P, Borie F (2012) Effects of soil aluminum on early arbuscular mycorrhizal colonization of wheat and barley cultivars growing in an Andisol. Chilean J Agric Res 72:449–455

    Article  Google Scholar 

  • Seguel A, Cumming J, Klug-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183

    Article  CAS  PubMed  Google Scholar 

  • Seguel A, Barea JM, Cornejo P, Borie F (2015) Role of arbuscular mycorrhizal propagules and glomalin related soil protein in Al tolerance of two barley cultivars growing in acid soils with hihg Al levels. Crop Pasture Sci 66:696–705

    Article  CAS  Google Scholar 

  • Seguel A, Cumming J, Cornejo P, Borie F (2016) Aluminum tolerance of wheat cultivars in a non-limed and limed Andisol. App Soil Ecol 108:228–237

    Article  Google Scholar 

  • Seguel A, Cornejo P, Ramos A, von Baer E, Cumming J, Borie F (2017) Phosphorus acquisition by three wheat cultivars contrasting in aluminum tolerance growing in an aluminum-rich Andisol. Crop Pasture Sci 68:315–316

    Article  CAS  Google Scholar 

  • Senesi N, Loffredo E (1992) Soil physical chemistry. In: Sparks D (ed) The chemistry of soil organic matter, 5th edn. CRC Press

  • Shoji S, Nanzio M, Dahlgren RA (1993) Volcanic ash soils. Genesis, properties, and utilization. Dev. Soil Sci. 21. Elsevier, Amsterdam

    Google Scholar 

  • Smith SE, Read AJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Takahashi T, Dahlgren RA (2016) Nature, properties and function of aluminum–humus complexes in volcanic soils. Geoderma 263:110–121

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks PM (1997) Mineral control of soil organic storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Ugolini FC, Dahlgren RA (2002) Soil development in volcanic ash. Global Environ Res 6:69–82

    CAS  Google Scholar 

  • Valarini PJ, Curaqueo G, Seguel A, Manzano K, Rubio R, Cornejo P, Borie F (2009) Effect of compost application on some properties of a volcanic soil from central South Chile. Chilen J Agric Res 69:416–425

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–71

    Article  CAS  Google Scholar 

  • Vance CP, Udhe-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vaneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC et al (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    Article  CAS  Google Scholar 

  • Velásquez G, Rumpel C, Redel J, Condron LM, Thi Ngo P, Calabi-Floody M, Turner B, Mora ML (2016) Chemical nature of residual phosphorus in Andisols. Geoderma 271:27–31

    Article  CAS  Google Scholar 

  • Vistoso E, Theng BKG, Bolan NS, Parfitt RL, Mora ML (2012) Competitive sorption of molybdate and phosphate in Andisols. J Soil Sci Plant Nutr 12:59–72

    Article  Google Scholar 

  • Wada K (1985) The distinctive properties of andosols. In: Stewart BA (ed) Advances in soil science, vol. 2. Springer, pp 172–229

  • Wang L, Liao H, Yan X, Zhuang B, Dong Y (2004) Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil 261:77–84

    Article  CAS  Google Scholar 

  • Zhang L, Ding X, Peng Y, George TS, Feng G (2018) Closing the loop of phosphorus loss from intensive agricultural soil: a microbial immobilization solution? Front Microbiol 9:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Zunino H, Borie F, Aguilera M, Martin JP, Haider K (1982a) Decomposition of 14 C-labeled glucose, plant and microbial products and phenols in volcanic-ash derived soils of Chile. Soil Biol Biochem 14:37–43

    Article  CAS  Google Scholar 

  • Zunino H, Borie F, Aguilera M, Peirano P, Caiozzi M, Martin JP (1982b) Biochemistry of soils derived from volcanic ashes. I. Microbial ecology and its relation with physico-chemical soil properties. Agric Tecn (Chile) 42:67–72

    CAS  Google Scholar 

Download references

Funding

Financial support was received from the FONDECYT 1170264 (P. Cornejo), FONDECYT 11160385 (A. Seguel), and FONDECYT 11170641 (P. Aguilera) grants from the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile. A. Valentine was supported in Chile by a grant from the MEC Program No80170023 (CONICYT). P. Cornejo also thank to CONICYT/FONDAP/15130015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Cornejo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memoriam Dr. José Miguel Barea Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borie, F., Aguilera, P., Castillo, C. et al. Revisiting the Nature of Phosphorus Pools in Chilean Volcanic Soils as a Basis for Arbuscular Mycorrhizal Management in Plant P Acquisition. J Soil Sci Plant Nutr 19, 390–401 (2019). https://doi.org/10.1007/s42729-019-00041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00041-y

Keywords

Navigation