Skip to main content

Advertisement

Log in

Organic matter stabilization in two Andisols of contrasting age under temperate rain forest

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Recent studies with Andisols show that the carbon (C) stabilization capacity evolves with soil age relative to the evolution of the mineral phase. However, it is not clear how soil mineralogical changes during pedogenesis are related to the composition of soil organic matter (SOM) and 14C activity as an indicator for the mean residence time of soil organic matter (SOM). In the present study, we analyzed the contribution of allophane and metal–SOM complexes to soil C stabilization. Soil organic matter was analyzed with solid-state 13C nuclear magnetic resonance spectroscopy. Additionally, the soil was extracted with Na-pyrophosphate (Alp, Fep) and oxalate (Alo, Sio, and Feo). Results supported the hypothesis that allophane plays a key role for SOM stabilization in deep and oldest soil, while SOM stabilization by metal (Al and Fe) complexation is more important in the surface horizons and in younger soils. The metal/Cp ratio (Cp extracted in Na-pyrophosphate), soil pH, and radiocarbon age seemed to be important indicators for formation of SOM–metal complexes or allophane in top- and subsoils of Andisols. Changes in main mineral stabilization agents with soil age do not influence SOM composition. We suggest that the combination of several chemical parameters (Alp, Fep and Cp, metal/Cp ratio, and pH) which change through soil age controls SOM stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson C, Celis-diez J, Bond BJ, Martínez Pastur G, Little L, Armesto JJ, Ghersa C, Austin A, Schlichter T, Lara A, Carmona M, Chaneton EJ, Gutierrez JR, Rozzi R, Vanderbilt K, Oyarce G, Fernández RJ (2012) Progress in creating a joint research agenda that allows networked long-term socio-ecological research in southern South America: addressing crucial technological and human capacity gaps limiting its application in Chile and Argentina. Austral Ecol 37:529–536

    Article  Google Scholar 

  • Bardy M, Bonhomme C, Fritsch E, Maquet J, Hajjar R, Allard T, Derenne S, Calas G (2007) Al speciation in tropical podzols of the upper Amazon Basin: a solid-state 27Al MAS and MQMAS NMR study. Geochim Cosmochim Acta 71:3211–3222

    Article  CAS  Google Scholar 

  • Buurman P, Peterse F, Almendros-Martin G (2007) Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci 58:1330–1347

    Article  CAS  Google Scholar 

  • CIREN (2001) Descripciones de Suelo, Materiales y Símbolos. Estudio agrológico, X Región, Santiago, Chile

  • Dahlgren RA, Ugolini FC (1991) Distribution and characterization of short-range order minerals in spodosols from the Washington cascades. Geoderma 48:391–413

    Article  CAS  Google Scholar 

  • Dahlgren RA, Walker WJ (1993) Aluminum release rates from selected Spodosol Bs horizons: effect of pH and solid-phase aluminum pools. Geochim Cosmochim Acta 57:57–66

    Article  CAS  Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties and management of volcanic soils. Adv Agron 82:113–182

    Article  CAS  Google Scholar 

  • Dignac MF, Houot S, Francou C, Derenne S (2005) Pyrolytic study of compost and waste organic matter. Org Geochem 36:1054–1071

    Article  CAS  Google Scholar 

  • Egli M, Nater M, Mirabella A, Raimondi S, Plötze M, Alioth L (2008) Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma 143:101–114

    Article  CAS  Google Scholar 

  • Eswaran H, van den Berg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Article  Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2007) Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Org Geochem 38:1356–1372

    Article  CAS  Google Scholar 

  • Forte C, Piazzi A, Pizzanelli S, Certini G (2006) CP MAS 13C spectral editing and relative quantitation of a soil sample. Solid State Nucl Magn Reson 30:81–88

    Article  PubMed  CAS  Google Scholar 

  • Garrido E, Matus F (2012) Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? Catena 92:106–112

    Article  CAS  Google Scholar 

  • Gelinas Y, Prentice KM, Baldock JA, Hedges JI (2001) An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environ Sci Technol 35:3519–3525

    Article  PubMed  CAS  Google Scholar 

  • Higashi T, De Coninck F, Gelaude F (1981) Characterization of some spodic horizons of the campine (Belgium) with dithionite-citrate, pyrophosphate and sodium hydroxide-tetraborate. Geoderma 25:131–142

    Article  CAS  Google Scholar 

  • Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172

    Article  Google Scholar 

  • Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80:243–270

    Article  Google Scholar 

  • Lilienfein J, Qualls RG, Uselman SM, Bridghamb SD (2003) Soil formation and organic matter accretion in a young andesitic chronosequence at Mt. Shasta, California. Geoderma 116:249–264

    Article  CAS  Google Scholar 

  • Lopez-Ulloa M, Veldkamp E, de Koning GHJ (2005) Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Sci Soc Am J 69:1110–1117

    Article  CAS  Google Scholar 

  • Matus F, Amigo X, Kristiansen SM (2006) Aluminium stabilization controls organic carbon levels in Chilean volcanic soils. Geoderma 132:158–168

    Article  CAS  Google Scholar 

  • Matus F, Garrido E, Sepúlveda N, Cárcamo I, Panichini M, Zagal E (2008) Relationship between extractable Al and organic C in volcanic soils of Chile. Geoderma 148:180–188

    Article  CAS  Google Scholar 

  • Matus F, Panichini M, Godoy R, Borie F (2009) Soil carbon storage in allophanic soils: study of a temperate pristine rainforest Nothofagus pumilio in the altitudinal limit. In: Verhoest N, Boeckx P, Oyarzún C, Godoy R (eds) Proceedings in ecological advances on Chilean temperate rainforests. Academic, Ghent, pp 147–169

    Google Scholar 

  • McKeague JA (1967) An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in Podzols and some other soils. Can J Soil Sci 47:95–99

    Article  CAS  Google Scholar 

  • Mikutta R, Schaumann GE, Gildemeister D, Bonneville S, Kramer MG, Chorover J, Chadwick OA, Guggenberg G (2009) Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochim Cosmochim Acta 73:2034–2060

    Article  CAS  Google Scholar 

  • Mizota C, Van Reeuwijk LP (1989) Clay mineralogy and chemistry of soils formed in volcanic material in diverse climatic regions. Soil Monograph 2. ISRIC, Wageningen

    Google Scholar 

  • Nanzyo M (2002) Unique properties of volcanic ash soils. Glob Environ Res 6:99–112

    CAS  Google Scholar 

  • Oyarzún C, Godoy R, De Schreijver A, Staelens J, Lust N (2004) Water chemistry and nutrient budget in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry 71:107–123

    Article  Google Scholar 

  • Oyarzún C, Godoy R, Staelens J, Donoso P, Verhoest N (2011) Rainfall partitioning in temperate rainforest in the Andes of South-Central Chile is related to forest structure and tree characteristics. Hydrol Process 25(4):623–633

    Article  Google Scholar 

  • Panichini M, Matus F, Mora M, Godoy R, Bolan NS, Rumpel C, Borie F (2012) Carbon storage distribution in soil organic matter fractions of different ecosystems. Eur J Soil Sci. doi:10.1111/j.1365-2389.2012.01488.x

  • Parfitt RL (2009) Allophane and imogolite: role in soil biogeochemical processes. Clay Miner 44:135–155

    Article  CAS  Google Scholar 

  • Parfitt RL, Wilson AD (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Catena Suppl 7:1–8

    Google Scholar 

  • Peña-Ramírez VM, Vázquez-Selem L, Siebe C (2009) Soil organic carbon stocks and forest productivity in volcanic ash soils of different age (1835–30,500 years B.P.) in Mexico. Geoderma 149:224–234

    Article  Google Scholar 

  • Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416–419

    Article  PubMed  Google Scholar 

  • Percival HJ, Parfitt RL, Scot NA (2000) Factors controlling soil carbon levels in New Zealand grassland: is clay content important? Soil Sci Soc Am J 64:1623–1630

    Article  CAS  Google Scholar 

  • Prior CA, Baisden WT, Bruhn F, Neff JC (2007) Using a soil chronosequence to identify soil fractions for understanding and modeling soil carbon dynamics in New Zealand. Radiocarbon 49:1093–1102

    CAS  Google Scholar 

  • Rivas Y, Matus F, Rumpel C, Knicker H, Garrido E (2012) Black carbon contribution in volcanic soils affected by wildfire or stubble burning. Org Geochem 47:41–50

    Article  CAS  Google Scholar 

  • Rumpel C, Rabia N, Derenne S, Quenea K, Eusterhues K, Kögel-Knabner I, Mariotti A (2006) Alterations of soil organic matter following treatment with hydrofluoric acid (HF). Org Geochem 37:1437–1451

    Article  CAS  Google Scholar 

  • Rumpel C, Rodríguez-Rodríguez A, González-Pérez JA, Arbelo C, Chabbi A, Nunan N, González-Vila FJ (2012) Contrasting composition of free and mineral-bound organic matter in top and subsoil horizons of Andosols. Biol Fertil Soils 48:401–411

    Article  CAS  Google Scholar 

  • Shoji S, Fujiwara Y (1984) Active aluminum and iron in humus horizons of Andosols from Northeastern Japan: their forms, properties and significance in clay weathering. Soil Sci 137:216–226

    Article  CAS  Google Scholar 

  • Soil Survey Laboratory Staff (2008) Soil survey laboratory methods manual. Soil survey. Investigations report. USDA SCS, Washington DC

    Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Takahashi T, Shoji S (2002) Distribution and classification of volcanic ash soils. Glob Environ Res 6:83–97

    Google Scholar 

  • Tonneijck FH, Jansen B, Nierop KGJ, Verstraten JM, Sevink J, De Lange L (2010) Towards understanding of carbon stocks and stabilisation in volcanic ash soils in natural Andean ecosystems of northern Ecuador. Eur J Soil Sci 61:392–405

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  • Ugolini E, Dahlgren R (1987) The mechanism of podzolization as revealed by soil solution studies. In: Righi D, Chauvel A (eds) Podzols et podzolisation. Association Francaise pour I’Etude du Sol et Institut National de la Recherche Agronomique, France, pp 195–203

    Google Scholar 

  • von Lutzöw M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, England

    Google Scholar 

  • Zegouagh Y, Derenne S, Dignac MF, Baruiso E, Mariotti A, Largeau C (2004) Demineralisation of a crop soil by mild hydrofluoric acid treatment. Influence on organic matter composition and pyrolysis. J Anal Appl Pyrolysis 71:119–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank FONDECYT project no. 1080065 for the financial support of this study. We also acknowledge ECOSSUD-CONICYT C08U01 for their financial support between the French and the Chilean research groups. The first author thanks the research group of CNRS, BIOEMCO (UMR Université Paris VI et XI-CNRS-IRD-AgroParisTech), Thiverval-Grignon, France. We thank also the Lehrstuhl für Bodenkunde, TU-München-Weihenstephan, Germany, for providing access to the NMR instrument during a scientific internship of the first author and the ESF for providing a travel grant under the framework of the MOLTER program. The first author also thanks MECESUP and CONICYT scholarship program for financial support during the doctorate program. Finally, our recognition to N. Sepulveda and C. Albornoz for their support in the laboratory at Universidad de La Frontera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Matus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neculman, R., Rumpel, C., Matus, F. et al. Organic matter stabilization in two Andisols of contrasting age under temperate rain forest. Biol Fertil Soils 49, 681–689 (2013). https://doi.org/10.1007/s00374-012-0758-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0758-2

Keywords

Navigation