Skip to main content

Advertisement

Log in

Metaproteomics: an emerging tool for the identification of proteins from extreme environments

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Microbial communities from extreme environments, such as saline, arid, hot, cold, acidic, or alkaline are especially important because they have special genetic and physiological modifications to function properly under extreme environments. They possess extremozymes and other biomolecules that can be used in various industrial processes, e.g., pharmaceuticals, paper manufacturing, degradation of complex organic molecules, biofuel production and food industries. With the advent of new sequencing technologies and ‘omics’ approaches, such as metagenomics, metatranscriptomics and metaproteomics, new windows have been opened to study the microbial ecology and functional microbial communities from extreme environments. Recently, metaproteomic analysis has been extensively used to explore the functional microbial communities from various extreme environments around the globe. In this review, we have focused on the microbial diversity analysis, identification of novel proteins, and enzymes from extreme environments, through metaproteomic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137

    Article  CAS  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  Google Scholar 

  • Bao Z, Okubo T, Kubota K, Kasahara Y (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052

    Article  CAS  Google Scholar 

  • Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Bastida F, García C, von Bergen M, Moreno JL, Richnow HH, Jehmlich N (2015) Deforestation fosters bacterial diversity and the cyanobacterial community responsible for carbon fixation processes under semiarid climate: a metaproteomics study. Appl Soil Ecol 93:65–67

    Article  Google Scholar 

  • Bastida F, Hern´andez T, Garcıa C (2014) Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J Proteom 101:31–42

    Article  CAS  Google Scholar 

  • Bastida F, Moreno JL, Nicolas C, Hernandez T, Garc IA (2009) Soil metaproteomics: a review of an emerging environmental science. Significance methodology and perspectives. Eur J Soil Sci 60:845–859

    Article  CAS  Google Scholar 

  • Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW (2013) Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J 7:1200–1210

    Article  CAS  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Biores Technol 128:751–759

    Article  CAS  Google Scholar 

  • Borges N, Jorge CD, Gonçalves LG, Gonçalves S, Matias PM, Santos H (2014) Mannosyl-glycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles 18:835–852

    Article  CAS  Google Scholar 

  • Boteva N, Kambourova M (2018) Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Eight ed. Springer, Singapore

  • Boutaiba S, Hacène H, Bidle KA, Maupin-Furlow JA (2011) Microbial diversity of the hypersaline Sidi Ameur and Himalatt salt lakes of the Algerian Sahara. J Arid Environ 75:909–916

    Article  Google Scholar 

  • Bunge CR (2016) On the concept of a psychrophile. ISME J 10:793–795

    Article  Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M et al (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586

    Article  CAS  Google Scholar 

  • Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866

    Article  CAS  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Tre Plant Sci 13:499–505

    Article  CAS  Google Scholar 

  • Chiang AJ, Malli Mohan GB, Singh NK, Vaishampayan PA, Kalkum M, Venkateswaran K (2019) Alteration of proteomes in first-generation cultures of Bacillus pumilus spores exposed to outer space. mSystems 4(4):e00195–e00119

    Article  Google Scholar 

  • Chiapello M, Zampieri E, Mello A (2020) A small effort for researchers, a big gain for soil metaproteomics. Front Microbiol 11:88

    Article  Google Scholar 

  • Collins RE, Deming JW (2013) An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles 17:601–610

    Article  CAS  Google Scholar 

  • Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1(4):179–184

    Article  Google Scholar 

  • Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    Article  CAS  Google Scholar 

  • Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JC, Jakob U (2015) HdeB functions as an acid-protective chaperone in bacteria. J Biol Chem 290(1):65–75 (published correction appears in J Biol Chem 290(16):9950)

    Article  CAS  Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    Article  CAS  Google Scholar 

  • Defez R, Esposito R, Angelini C, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol Plant Microbe Interact 29:484–495

    Article  CAS  Google Scholar 

  • Delgado-García M, Aguilar CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2014) Screening for extracellular hydrolytic enzymes production by different halophilic bacteria. Mycopath 12(1):17–23

    Google Scholar 

  • Denef VJ, VerBerkmoes NC, Shah MB, Abraham P, Lefsrud M, Hettich RL, Banfield JF (2009) Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ Microbiol 11:313–325

    Article  CAS  Google Scholar 

  • Deocampo DM, Renaut RW (2016) Geochemistry of African soda lakes. In: Schagerl M (ed) Soda lakes of East Africa. Springer, Cham, pp 77–93

    Google Scholar 

  • Dettmer A, dos Anjos PS, Gutterres M (2013) Special review paper: Enzymes in the leather industry. J Am Leather Chem As 108(4):146–158

    CAS  Google Scholar 

  • Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ et al (2020) The Proteome exchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res 48:1145–1152

    Google Scholar 

  • Everley RA, Mott TM, Wyatt SA, Toney DM, Croley TR (2008) Liquid chromatography/mass spectrometry characterization of Escherichia coli and Shigella species. J Am Soc Mass Spectrom 19:1621–1628

    Article  CAS  Google Scholar 

  • Ewing TA, Fraaije MW, van Berkel WJH (2015) Oxidation using alcohol oxidases. In: Faber K, Fessner W-D (eds) Biocatalysis in organic synthesis 3. Georg Thieme Verlag KG, Stuttgart, pp 157–186

    Google Scholar 

  • Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422

    Article  CAS  Google Scholar 

  • Fernández AB, Vera-Gargallo B, Sánchez-Porro C, Ghai R, Papke RT, Rodriguez-Valera F, Ventosa A (2014) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196

    Article  Google Scholar 

  • Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2(11):898–907

    Article  CAS  Google Scholar 

  • Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes: past, present and future. Environ Technol 31:845–856

    Article  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  Google Scholar 

  • Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S (2015) Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genom 16:383

    Article  CAS  Google Scholar 

  • Glick BR, Li J, Shah S, Penrose DM, Moffatt BA (1999) ACC deaminase is central to the functioning of plant growth promoting rhizobacteria. In: Biology and Biotechnology of the Plant Hormone Ethylene II (pp. 293–298)

  • Gupta G, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganisms from extreme environment. IJEAB 7(2):371–380

    Google Scholar 

  • Han MJ, Park SJ, Park TJ, Lee SY (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol Bioengin 88:426–436

    Article  CAS  Google Scholar 

  • Hanson BT, Hewson I, Madsen EL (2014) Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb Ecol 67:520–539

    Article  Google Scholar 

  • Hensley SA, Jung JH, Park CS, Holden JF (2014) Thermococcus paralvinellae sp. nov. and Thermococcu scleftensis sp. nov. of hyperthermophilic heterotrophs from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 64:3655–3659

    Article  CAS  Google Scholar 

  • Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 3–15

    Chapter  Google Scholar 

  • Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 99–118

    Chapter  Google Scholar 

  • Horikoshi M, Nakajima S, Masahito U, Mukaiyama T (2011) Extremophiles Handbook bio-organisms K Japan Sci Technol Age Exploratory Research for Advanced Technology (ERATO). Mac Quan Con Proj 2:113–8656

    Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14

    Article  CAS  Google Scholar 

  • Julca I, Alaminos M, González-López J, Manzanera M (2012) Xeroprotectants for the stabilization of biomaterials. Biotechnol Adv 30(6):1641–1654

    Article  CAS  Google Scholar 

  • Karan R, Capes MD, DasSarma (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4–10

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–939

    Article  CAS  Google Scholar 

  • Keiblinger KM, Riedel K (2018) Sample preparation for metaproteome analyses of soil and leaf litter. Methods Mol Biol 1841:303–318

    Article  CAS  Google Scholar 

  • Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L et al (2012) Soil metaproteomics—comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24

    Article  CAS  Google Scholar 

  • Kevbrin VV (2019) Isolation and cultivation of alkaliphiles. Adv Biochem Eng Biotechnol 2019:1–32

    Google Scholar 

  • Khalikova E, Somersalo S, Korpela T (2019) Metabolites produced by alkaliphiles with potential biotechnological applications. Adv Biochem Eng Biotechnol 2019:1–37

    Google Scholar 

  • Khalil A (2011) Screening and characterization of thermophilic bacteria (lipase, cellulase and amylase producers) from hot springs in Saudi Arabia. J Food Agric Environ 9(2):672–675

    Google Scholar 

  • Kleiner M (2019) Metaproteomics: Much more than measuring gene expression in microbial communities. mSystems 4(3):e00115–e00119

    Article  CAS  Google Scholar 

  • Kosova K, Vitamvas P, Urban MO, Klima M, Roy A, Prasil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913–20942

    Article  CAS  Google Scholar 

  • Kulshreshtha NM, Kumar A, Bisht G, Pasha S, Kumar R (2012) Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater. Sci World J 2012:345101

    Article  CAS  Google Scholar 

  • Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JF, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895

    Article  CAS  Google Scholar 

  • Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M (2015) Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 91:fiv011

    Article  Google Scholar 

  • Liszka M, Clark M, Schneider E, Clark DS (2012) Nature versus nurture: developing enzymes that function under extreme conditions. Ann Rev Chem Biomol Eng 3:77–102

    Article  CAS  Google Scholar 

  • Liu D, Li M, Xi B, Zhao Y, Wei Z, Song C, Zhu C (2015) Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant. Microbial Biotec 8:950–960

    Article  CAS  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:240–247

    Article  Google Scholar 

  • López-López O, Cerdán ME, González-Siso MI (2013) Hot spring functional metagenomics. Life 3:308–320

    Article  CAS  Google Scholar 

  • Lüders S, Fallet C, Franco-Lara E (2009) Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 7::36

    Article  CAS  Google Scholar 

  • Mamo G, Mattiasson B (2016) Alkaliphilic microorganisms in biotechnology. Biotechnology of extremophiles. Springer, Cham, pp 243–272

    Chapter  Google Scholar 

  • Manzanera M, de Castro AG, Tøndervik A, Rayner-Brandes M, Strøm AR, Tunnacliffe A (2002) Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol 68:328–4333

    Article  CAS  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microb 6:805–814

    Article  CAS  Google Scholar 

  • Martinez X, Pozuelo M, Pascal V, Campos D, Gut I, Gut M et al (2016) MetaTrans: an open-source pipeline for metatranscriptomics. Sci Rep 6:26447

    Article  CAS  Google Scholar 

  • Mattarozzi M, Manfredi M, Montanini B, Gosetti F, Sanangelantoni AM, Marengo E et al (2017) A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 409:2327–2339

    Article  CAS  Google Scholar 

  • Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149

    Article  CAS  Google Scholar 

  • Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505

    Article  Google Scholar 

  • Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017:6943952

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    Article  CAS  Google Scholar 

  • Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4:673–685

    Article  CAS  Google Scholar 

  • Mueller RS, Dill BD, Pan C, Belnap CP, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF (2011) Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environ Microbiol 13:2279–2292

    Article  CAS  Google Scholar 

  • Mukhtar S, Ahmad S, Bashir A, Mirza MS, Mehnaz S, Malik KA (2019c) Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 228:126307

    Article  CAS  Google Scholar 

  • Mukhtar S, Laaldin N, Mehnaz S, Malik KA (2018c) Recent advances in soil metaproteomics from hypersaline environments. Proc Pak Acad Sci 55(4):19–28

    Google Scholar 

  • Mukhtar S, Malik KA, Mehnaz S (2018a) Isolation and characterization of haloalkaliphilic bacteria isolated from the rhizosphere of Dichanthium annulatum. J Adv Res Biotech 3:1–9

    Article  Google Scholar 

  • Mukhtar S, Mehnaz S, Malik KA (2019a) Microbiome of halophyte: diversity and importance for plant health and productivity. Microbiol Biotech Lett 47(1):1–10

    Article  Google Scholar 

  • Mukhtar S, Mehnaz S, Malik KA (2019b) Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crops improvement. Environ Sustain. https://doi.org/10.1007/s42398-019-00061-5

    Article  Google Scholar 

  • Mukhtar S, Mehnaz S, Malik KA (2020) Osmoadaptation in halophilic bacteria and archaea. Res J Biotech 15(5):154–161

    Google Scholar 

  • Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Kauser AM (2018b) Impact of soil salinity on the structure and composition of rhizosphere microbiome. World J Microbiol Biotech 34:136

    Article  CAS  Google Scholar 

  • Myka KK, Allcock DJ, Eloe-Fadrosh EA, Tryfona T, Haag AF, Lauro FM et al (2017) Adaptations of cold- and pressure-loving bacteria to the deep-sea environment: cell envelope and flagella. In: Chénard C, Lauro F et al (eds) Microbial ecology of extreme environments. Springer, Cham, pp 51–80

    Chapter  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN et al (2005) Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  CAS  Google Scholar 

  • Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ, Etemadifar Z et al (2017) Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci Rep 7:11522

    Article  CAS  Google Scholar 

  • Nicora CD, Anderson BJ, Calliste SJ, Norbeck AD (2013) Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 13:2776–2785

    Article  CAS  Google Scholar 

  • Nunn BL, Slattery KV, Cameron KA, Timmins-Schiffman E, Junge K (2015) Proteomics of Colwellia psychrerythraea at subzero temperatures—A life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 17:2319–2335

    Article  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluver Academic Publishers, London

    Book  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Tech 31:825–834

    Article  CAS  Google Scholar 

  • Osman JR, Regeard C, Badel C, Fernandes G, DuBow MS (2019) Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Anton Leeuw Int J G 112(3):351–365

    Article  CAS  Google Scholar 

  • Overland J, Dunlea E, Box JE, Corell R, Forsius M, Kattsov V, Wang M (2019) The urgency of Arctic change. Polar Sci 21:6–13

    Article  Google Scholar 

  • Paul D, Kumbhare SV, Mhatre SS, Chowdhury SP, Shetty SA, Marathe NP, Bhute S, Shouche YS (2016) Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite Crater Lake within basalt rock. Front Microbiol 6:1553

    Article  Google Scholar 

  • Pieper R, Huang ST, Suh MJ (2014) Proteomics and metaproteomics. Encycl Metagen 8:1–11

    Google Scholar 

  • Piette F, Leprince P, Feller G (2012) Is there a cold shock response in the Antarctic psychrophile Pseudoalteromonas haloplanktis? Extremophiles 16:681–683

    Article  CAS  Google Scholar 

  • Pinar G, Kraková L, Pangallo D, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2014) Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo Italy. Extremophiles 18(4):677–691

    Article  CAS  Google Scholar 

  • Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotech 3:75

    Article  Google Scholar 

  • Qi J, Xu M, An C, Wu M, Zhang Y, Li X, Zhang Q, Lu G (2017) Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Phys Earth Planet Inter 263:12–22

    Article  CAS  Google Scholar 

  • Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: Molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271–281

    Article  CAS  Google Scholar 

  • Richard H, Foster JW (2004) Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186(18):6032–6041

    Article  CAS  Google Scholar 

  • Roca A, Pizarro-Tobías P, Udaondo Z, Fernández M, Matilla MA, Molina‐Henares MA, Ramos JL (2013) Analysis of the plant growth‐promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD‐1. Enviro Microbiol 15(3):780–794

    Article  CAS  Google Scholar 

  • Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million years old permafrost: a genome and transcriptome approach. BMC Genom 9:547

    Article  CAS  Google Scholar 

  • Sarwar MK, Azam I, Iqbal T (2015) Biology and applications of halophilic bacteria and archaea: A. eJBio 11(3):98–103

    Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Gleixner SK (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  Google Scholar 

  • Schneider T, Schmid E, de Castro JV, Cardinale M, Eberl L, Grube M et al (2007) Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol 73:3343–3347

    Article  CAS  Google Scholar 

  • Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    Article  CAS  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ et al (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  CAS  Google Scholar 

  • Shi W, Takano T, Liu S (2012) Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World J Microbiol Biotechnol 28(5):2147–2157

    Article  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526

    Article  CAS  Google Scholar 

  • Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci 10(4):309–326

    Google Scholar 

  • Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176(6):1729–1737

    Article  CAS  Google Scholar 

  • Spanò A, Gugliandolo C, Lentinia V, Maugeri TL, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67:21–29

    Article  CAS  Google Scholar 

  • Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14:1333–1346

    Article  CAS  Google Scholar 

  • Sukul P, Lupilov N, Leichert LI (2018) Characterization of ML-005, a novel Metaproteomics derived Esterase. Front Microbiol 9:1925

    Article  Google Scholar 

  • Sussulini A, Becker JS (2011) Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics 3:1271–1279

    Article  CAS  Google Scholar 

  • Sánchez-Porro C, Tokunaga H, Tokunaga M, Ventosa A (2007) Chromohalobacter japonicus sp. nov., a moderately halophilic bacterium isolated from a Japanese salty food. Int J Syst Evol Microbiol 57:2262–2266

    Article  CAS  Google Scholar 

  • Talwar C, Nagar S, Kumar R, Scaria J, Lal R, Negi RK (2020) Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Sci Rep 10(1):1151

    Article  CAS  Google Scholar 

  • Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L (2014) Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 80(2):478–485

    Article  CAS  Google Scholar 

  • Thompson SA, Blaser MJ (1995) Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect Immun 63(6):2185–2193

    Article  CAS  Google Scholar 

  • Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline Soda Lake Brines. Front Microbiol 7:211

    Article  Google Scholar 

  • Vilanova C, Porcar M (2016) Are multi-omics enough? Nat Microbiol 1(8):16101

    Article  CAS  Google Scholar 

  • Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H (2020) Metaproteomics: a strategy to study the taxonomy and functionality of the gut microbiota. J Proteom 219:103737

    Article  CAS  Google Scholar 

  • Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ et al (2012) A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:1883–1900

    Article  CAS  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920

    Article  CAS  Google Scholar 

  • Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15(20):3409–3417

    Article  CAS  Google Scholar 

  • Xie J, He Z, Liu X, Liu X, van Nostrand JD, Deng Y, Wu L, Zhou J, Qiu G (2011) Geochip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl Environ Microbiol 77:991–999

    Article  CAS  Google Scholar 

  • Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  Google Scholar 

  • Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    Article  Google Scholar 

  • Zhang X, Niu J, Liang Y, Liu X, Yin H (2016) Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 17:21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kauser Abdulla Malik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maseh, K., Ehsan, N., Mukhtar, S. et al. Metaproteomics: an emerging tool for the identification of proteins from extreme environments. Environmental Sustainability 4, 39–50 (2021). https://doi.org/10.1007/s42398-020-00158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-020-00158-2

Keywords

Navigation