Skip to main content

General Physiology of Alkaliphiles

  • Reference work entry
Extremophiles Handbook

Generally, alkaliphiles require alkaline environments and sodium ions not only for growth but also for sporulation and germination. Sodium ion-dependent uptake of nutrients has been reported in some alkaliphiles. Many alkaliphiles require various nutrients, such as polypeptone and yeast extracts, for their growth; several alkaliphilic Bacillus strains (Bacillus halodurans C-125, A-59, C-3, and AH-101) can grow in simple minimal media containing glycerol, glutamic acid, citric acid, etc. One of the best strains for genetic analysis is alkaliphilic B. halodurans C-125 and its many mutants have been made by conventional mutation methods. Whole genome sequence was determined and annotated in 2000 (Takami et al. 2000).

Extracellular pH Values

Alkaliphilic microorganisms are ubiquitous: Many alkaliphilic bacteria and archaea can be isolated more commonly from the earth. Alkalinity in nature may be the result of the geology and climate of the area, of industrial processes, or promoted by...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aono R (1985) Isolation and partial characterization of structural components of the cell walls of alkalophilic Bacillus strain C-125. J Gen Microbiol 131:105–111

    CAS  Google Scholar 

  • Aono R (1987) Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125: preparation of poly(γ-L-glutamate) from cell wall component. Biochem J 245:467–472

    PubMed  CAS  Google Scholar 

  • Aono R (1989) Characterization of cell wall components of the alkalophilic Bacillus strain C-125: identification of a polymer composed of polyglutamate and polyglucuronate. J Gen Microbiol 135:265–271

    CAS  Google Scholar 

  • Aono R (1990) The poly-α- and -β-1, 4-glucuronic acid moiety of teichuronopeptide from the cell wall of the alkalophilic Bacillus strain C-125. Biochem J 270:363–367

    PubMed  CAS  Google Scholar 

  • Aono R, Horikoshi K (1983) Chemical composition of cell walls of alkalophilic strains of Bacillus. J Gen Microbiol 129:1083–1087

    CAS  Google Scholar 

  • Aono R, Uramot M (1986) Presence of fucosamine in teichuronic acid of alkalophilic Bacillus strain C-125. Biochem J 233:291–294

    PubMed  CAS  Google Scholar 

  • Aono R, Ogino H, Horikoshi K (1992) pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci Biotechnol Biochem 56:48–53

    Article  PubMed  CAS  Google Scholar 

  • Aono R, Ito M, Horikoshi K (1993) Occurrence of teichuronopeptide in cell walls of Group-2 Alkaliphilic Bacillus spp. J Gen Microbiol 139(Part 11):2739–2744

    CAS  Google Scholar 

  • Aono R, Ito M, Joblin K, Horikoshi K (1994) Genetic recombination after cell fusion of protoplasts from the facultative alkaliphile Bacillus sp. C-125. -Uk Microbiology. 140(Part 11):3085–3090,

    Article  CAS  Google Scholar 

  • Aono R, Ito M, Joblin KN, Horikoshi K (1995) A high cell wall negative charge is necessary for the growth of the alkaliphile Bacillus lentus C-125 at elevated pH. -Uk Microbiology 141(Part 11):2955–2964

    Article  CAS  Google Scholar 

  • Aono R, Ito M, Horikoshi K (1997) Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe. Uk Microbiology 143:2531–2536

    Article  CAS  Google Scholar 

  • Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606

    PubMed  CAS  Google Scholar 

  • Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-γ-L-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14

    Article  PubMed  CAS  Google Scholar 

  • Boyer EW, Ingle MB, Mercer GD (1973) Bacillus alcalophilus subsp. halodurans subsp. nov.: an alkaline-amylase-producing alkalophilic organisms. Int J Syst Bacteriol 23:238–242

    Article  Google Scholar 

  • Gilmour R, Messner P, Guffanti AA, Kent R, Scheberl A, Kendrick N, Krulwich TA (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182:5969–5981

    Article  PubMed  CAS  Google Scholar 

  • Guffanti AA, Susman P, Blanco R, Krulwich TA (1978) The proton-motive force and α-aminoisobutyric acid transport in an obligatory alkalophilic bacterium. J Biol Chem 253:708–715

    PubMed  CAS  Google Scholar 

  • Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hamamoto T, Kitada M, Hino M, Kudo T, Horikoshi K (1994) Characteistics of alkali-sensitive mutants of alkaliphilic Bacillus sp. strain C-125 that show cellular morphological abnormalities. Biosci Biotechnol Biochem 58:2090–2092

    Article  CAS  Google Scholar 

  • Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T (1998) A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648

    PubMed  CAS  Google Scholar 

  • Hirota M, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132:278–280

    Article  CAS  Google Scholar 

  • Horikoshi K (1971) Production of alkaline enzymes by alkalophilic microorganisms. Part I. alkaline protease produced by Bacillus no. 221. Agric Biol Chem 36:1407–1414

    Article  Google Scholar 

  • Horikoshi K, Iida S (1958) Lysis of fungal mycelia by bacterial enzymes. Nature 181:917–918

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K, Yonezawa Y (1978) A bacteriophage active on an alkalophilic Bacillus sp. J Gen Virol 39:183–185

    Article  CAS  Google Scholar 

  • Ikura Y, Horikoshi K (1978) Cell free protein synthesizing system of alkalophilic Bacillus No.A-59. Agric Biol Chem 42:753–756

    Article  CAS  Google Scholar 

  • Ikura Y, Horikoshi K (1983) Studies on cell wall of alkalophilic Bacillus. Agric Biol Chem 47:681–686

    Article  CAS  Google Scholar 

  • Ito M, Nagane M (2001) Improvement of the electro-transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment. Biosci Biotechnol Biochem 65:2773–2775

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) Mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402

    PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Wang W, Krulwich TA (2000) Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J Bacteriol 182:5663–5670

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Guffanti AA, Krulwich TA (2001) Mrp-dependent Na+/H+ antiporters of Bacillus exhibit characteristics that are unanticipated for completely secondary active transporters. FEBS Lett 496(2–3):117–120

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD, Zvi L, Uematsu K, Krulwich TA (2004) MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Jarrell KF, Vydykhan T, Lee P, Agnew MD, Thomas NA (1997) Isolation and characterization of bacteriophage BCJA1, a novel temperate bacteriophage active against the alkaliphilic bacterium, Bacillus clarkii. Extremophiles 1:199–206

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Horikoshi K (1988) Isolation of bacteria which can grow at both high pH and low temperature. Appl Environ Microbiol 54:1066–1067

    PubMed  CAS  Google Scholar 

  • Kitada M, Horikoshi K (1977) Sodium ion-stimulated α-(1-14C)-aminoisobutyric acid uptake in alkalophilic Bacillus species. J Bacteriol 131:784–788

    PubMed  CAS  Google Scholar 

  • Kitada M, Kosono S, Kudo T (2000) The Na+/H+ antiporter of alkaliphilic Bacillus sp. Extremophiles 4:253–258

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Asai Y, Atsumi T, Kawagishi I, Homma M (1999) Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. J Mol Biol 285:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Kosono S, Asai K, Sadaie Y, Kudo T (2004) Altered gene expression in the transition phase by disruption of a Na+/H+ antiporter gene (shaA) in Bacillus subtilis. FEMS Microbiol Lett 232:93–99

    Article  PubMed  CAS  Google Scholar 

  • Koyama N, Nosoh Y (1976) Effect of the pH of culture medium on the alkalophilicity of a species of Bacillus. Arch Microbiol 109:105–108

    Article  PubMed  CAS  Google Scholar 

  • Koyama N, Kiyomiya A, Nosoh Y (1976) Na+ -dependent uptake of amino acids by an alkalophilic Bacillus. FEBS Lett 72:77–78

    Article  PubMed  CAS  Google Scholar 

  • Kropinski A, Hayward M, Agnew MD, Jarrell KF (2005) The genome of BCJA1c: a bacteriophage active against the alkaliphilic bacterium, Bacillus clarkii. Extremophiles 9:99–109

    Article  PubMed  CAS  Google Scholar 

  • Krulwich TA, Ito M, Guffanti AA (2001) The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505:158–168

    Article  PubMed  CAS  Google Scholar 

  • Kudo T, Horikoshi K (1979) The environmental factors affecting sporulation of an alkalophilic Bacillus species. Agric Biol Chem 43:2613–2614

    Article  CAS  Google Scholar 

  • Kudo T, Horikoshi K (1983a) Effect of pH and sodiium ion on germination of alkalophilic Bacillus species. Agric Biol Chem 47:665–669

    Article  CAS  Google Scholar 

  • Kudo T, Horikoshi K (1983b) The effect of pH on heat-resistance of spores of alkalophilic Bacillus no. 2b-2. Agric Biol Chem 47:403–404

    Article  CAS  Google Scholar 

  • Kudo T, Hino M, Kitada M, Horikoshi K (1990) DNA sequences required for the alkalophily of Bacillus sp. strain C-125 are located close together on its chromosomal DNA. J Bacteriol 172:7282–7283

    PubMed  CAS  Google Scholar 

  • Kurono Y, Horikoshi K (1973) Alkaline catalase produced Bacillus no. Ku-1. Agric Biol Chem 37:2565–2570

    Article  Google Scholar 

  • Roadcap GS, Kelly WR, Bethke CM (2005) Geochemistry of extremely alkaline (pH >12) ground water in slag-fill aquifers. Ground Water 43:806–816

    Article  PubMed  CAS  Google Scholar 

  • Roadcap GS, Sanford RA, Jin Q, Pardinas JR, Bethke CM (2006) Extremely alkaline (pH >12) ground water hosts diverse microbial community. Ground Water 44:511–517

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto Y, Sutherland KJ, Tamaoka J, Kobayashi T, Kudo T, Horikoshi K (1992) analysis of the flagellin (hag) gene of alkalophilic Bacillus sp. C-125. J Gen Micriobiol 138:2139–2166

    Google Scholar 

  • Seto Y, Hashimoto M, Usami R, Hamamoto T, Kudo T, Horikoshi K (1995) Characterization of a mutation responsible for an alkali-sensitive mutant, 18224, of alkaliphilic Bacillus sp. strain C-125. Biosci Biotechnol Biochem 59:1364–1366

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama S, Matsukura H, Koyama N, Nosoh Y, Imae Y (1986) Requirement of Na+ in flagellar rotation and amino-acid transport in a facultatively alkalophilic Bacillus. Biochim Biophys Acta 852:38–45

    Article  CAS  Google Scholar 

  • Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005a) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354

    Article  PubMed  CAS  Google Scholar 

  • Swartz TH, Ito M, Hicks DB, Nuqui M, Guffanti AA, Krulwich TA (2005b) The Mrp Na+/H+ antiporter increases the activity of the malate:quinone oxidoreductase of an Escherichia coli respiratory mutant. J Bacteriol 187:388–391

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Nakasone K, Hirama C, Takaki Y, Masui N, Fuji F, Nakamura Y, Inoue A (1999) An improved physical and genetic map of the genome of alkaliphilic Bacillus sp. C-125. Extremophiles 3:21–28

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawaral N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  PubMed  CAS  Google Scholar 

  • Tsujii K (2002) Donnan equilibrate cell walls: a pH-homeostasis mechanism in alkaliphiles. Colloids Surf B Biointerfaces 24:247

    Article  CAS  Google Scholar 

  • Wei Y, Southworth TW, Kloster H, Ito M, Guffanti AA, Moir A, Krulwich TA (2003) Mutational loss of a K+ and NH4+ transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4. J Bacteriol 185:5133–5147

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Horikoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Horikoshi, K. (2011). General Physiology of Alkaliphiles. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_6

Download citation

Publish with us

Policies and ethics