Skip to main content
Log in

Controlling on Attraction Forces of Water Droplets on Surfaces of Polypropylene Nanocomposites

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, Sol gel method was used to prepare polypropylene nanocomposites; some different types of the nanoparticles (clay, ZnO, SiO2 and TiO2) and different concentration (1, 5 and 10 wt%) were used to control on the attraction forces of water droplets on surfaces of polypropylene nanocomposites. The prepared polypropylene nanocomposites were characterized by FTIR, SEM, dielectric constant, contact angle, wetting energy, spreading coefficient and work of adhesion measurements. Experimental results deduced that clay and ZnO nanoparticles reduce the dielectric constant of polypropylene, while SiO2 and TiO2 increase this value. It has been reported that the wettability of the prepared nanocomposites is reduced by increasing certain nanoparticles ratio, which indicate the ability of the obtained nanocomposites for packaging and battery cases applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Saujanya, S. Radhakrishnan, Structure development and crystallization behaviour of PP/nanoparticulate composite. Polymer 42(16), 6723–6731 (2001)

    Article  Google Scholar 

  2. S. Mishra, S.H. Sonawane, R.P. Singh, A. Bendale, K. Patil, Effect of nano-Mg(OH)2 on the mechanical and flame-Retarding properties of polypropylene composites. J. Appl. Polym. Sci. 94, 116–122 (2004)

    Article  Google Scholar 

  3. M.Q. Zhang, M.Z. Rong, H.B. Zhang, R.K. Fried, Mechanical properties of low nano-silica filled high density polyethylene composites. Polym. Eng. Sci. 43(2), 490–500 (2003)

    Article  Google Scholar 

  4. J.P. He, H.M. Li, Z.Y. Wang, Y. Gao, In situ preparation of poly(ethylene terephthalate) SiO2 nanocomposites. Eur. Polym. J. 42, 1128–1134 (2006)

    Article  Google Scholar 

  5. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. Rep. 28(1–2), 1–63 (2000)

    Article  Google Scholar 

  6. J. Yang, Y. Lin, J. Wang, Mingfang Lai, Jing Li, J. Liu et al., Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J. Appl. Polym. Sci. 98, 1087–1091 (2005)

    Article  Google Scholar 

  7. B. Hada, G. Zhaoxia, Y. Jian, Electrical resistivity, crystallization and mechanical properties of polypropylene/multi-walled carbon nanotube/calcium carbonate composites prepared by melt mixing. Chin. J. Polym. Sci. 27(3), 393–398 (2009)

    Article  Google Scholar 

  8. X. Hesheng, W. Qi, L. Kanshe, H. GuoHua, Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J. Appl. Polym. Sci. 93, 378–386 (2004)

    Article  Google Scholar 

  9. K. Prashantha, J. Soulestin, M.F. Lacrampe, M. Claes, G. Dupin, P. Krawczak, Multiwalled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym. Lett. 10(2), 735–745 (2008)

    Article  Google Scholar 

  10. T. Yong, H. Yuan, S. Lei, Z. Ruowen, G. Zhou, C. Zuyao et al., Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym. Degrad. Stab. 82, 127–131 (2003)

    Article  Google Scholar 

  11. M. Pralay, H.N. Pham, O. Masami, H. Naoki, U. Arimitsu, Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35, 2042–2049 (2002)

    Article  Google Scholar 

  12. C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta, V. Markakis, Manufacturing nanomaterials: from research to industry. Manufact. Rev. EDP Sci. 1, 11 (2014). https://doi.org/10.1051/mfreview/2014009

    Article  Google Scholar 

  13. J.H. Lee, Y.G. Jeong, J. Appl. Polym. Sci. 115, 1039 (2010)

    Article  Google Scholar 

  14. D.R. Paul, L.M. Robeson, Polymer 49, 3187 (2008)

    Article  Google Scholar 

  15. C. McClory, S.J. Chin, T. McNally, Aust. J. Chem. 62, 762 (2009)

    Article  Google Scholar 

  16. M.H. Jee, J.S. Lee, J.Y. Lee, Y.G. Jeong, D.H. Baik, Fibers Polym. 11, 1 (2010)

    Article  Google Scholar 

  17. A.A. Ebnalwaled, A. Thabet, Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. J. 220, 374–383 (2016)

    Article  Google Scholar 

  18. D.W. Schaefer, R.S. Justice, Macromolecules 40, 8501 (2007)

    Article  Google Scholar 

  19. E.S. Trofimchuk, E.A. Nesterova, I.B. Meshkov, N.I. Nikonorova, A.M. Muzafarov, N.P. Bakeev, Macromolecules 40, 9111 (2007)

    Article  Google Scholar 

  20. S. Alavi, S. Thomas, K.P. Sandeep, N. Kalarikkal, J. Varghese, S. Yaragalla. Polymers for Packaging Applications, Apple Academic Press Inc. (2015)

  21. S.D.F. Mihindukulasuriya, L.-T. Lim, Nanotechnology development in food packaging: a review. Trends Food Sci. Technol. 40, 149–167 (2014)

    Article  Google Scholar 

  22. J.M. Nieuwenhuis, H.B. Haanstra, Micro fractography of thin films. Philips. Tech. Rev. 27, 87–911 (1966)

    Google Scholar 

  23. B. Lewis, D.S. Campbell, Nucleation and initial growth behaviour of thin films. J. Vac. Sci. Technol. 4, 209–218 (1967)

    Article  Google Scholar 

  24. N.G. Nakhodkin, A.I. Shaldervan, Effect of vapor incidence angles on profile and properties of condensed films. Thin Solid Films 10, 109–122 (1972)

    Article  Google Scholar 

  25. A.G. Dirks, H.J. Leany, Columnar microstructure in vapor-deposited thin films. Thin Solid Films 47, 219–233 (1977)

    Article  Google Scholar 

  26. H. Van Kranenburg, C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. R Rep. 11, 295–354 (1994)

    Article  Google Scholar 

  27. J.K. Kwan, J.C. Sit, High sensitivity Love-wave humidity sensors using glancing angle deposited thin films. Sens. Actuat.B 8 173, 164 (2012)

    Article  Google Scholar 

  28. J.K. Kwan, J.C. Sit, Acoustic wave liquid sensors enhanced with glancing angle deposited thin films. Sens. Actuat. 181, 715 (2013)

    Article  Google Scholar 

  29. R. Tadmor, Line energy and the relation between advancing, receding and Young contact angles. Langmuir 20(18), 7659–7664 (2004)

    Article  Google Scholar 

  30. Y. Murakami, M. Nemoto, S. Okuzumi, S. Masuda, M. Nagao, N. Hozumi, Y. Sekiguchi, DC conduction and electrical breakdown of MgO/LDPE nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 15, 33–39 (2008)

    Article  Google Scholar 

  31. E. Andreassen, Infrared and Raman Spectroscopy of Polypropylene (Kluwer Publishers, Dordrecht, 1999)

    Book  Google Scholar 

  32. F. Zeng, J. Chen, F. Yang, J. Kang, Y. Cao, M. Xiang, Effects of polypropylene orientation on mechanical and heat seal properties of polymer–aluminum–polymer composite films for pouch lithium-ion batteries. Mater. (Basel) 11(1), 144 (2018)

    Article  Google Scholar 

  33. M.K. Pal, J. Gautam, J. Therm. Anal. Calorim. 111, 689–701 (2013)

    Article  Google Scholar 

  34. R. Gregorio Jr., R.C. Captão, J. Mater. Sci. 35, 299 (2000)

    Article  Google Scholar 

  35. A. Thabet, A.A. Ebnalwaled, Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications. Measurement 110, 78–83 (2017)

    Article  Google Scholar 

  36. B. Bera, M.H.G. Duits, M.A.C. Stuart, D. van den Ende, F. Mugele, Surfactant induced autophobing. Soft Matter 12, 4562–4571 (2016)

    Article  Google Scholar 

  37. D. Qu, R. Suter, S. Garoff, Surfactant self-assemblies controlling spontaneous dewetting. Langmuir 18, 1649–1654 (2002)

    Article  Google Scholar 

  38. P.J. Scales, F. Grieser, T.W. Healy, Electrokinetics of the muscovite mica-aqueous solution interface. Langmuir 6, 582–589 (1990)

    Article  Google Scholar 

  39. L. Yang, J. Chen, Y. Guo, Z. Zhang, Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma. Appl. Surf. Sci. 255(8), 4446–4451 (2009)

    Article  Google Scholar 

  40. S. Bronco, M. Bertoldo, E. Taburoni, C. Cepek, M. Sancrotti, The effects of cold plasma treatments on LDPE wettability and curing kinetic of a polyurethane adhesive. Macromol. Symp. 218, 71–80 (2004)

    Google Scholar 

  41. C. Arpagaus, A. Rossi, P.R. von Rohr, Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor—process, wettability improvement and ageing effects. Appl. Surf. Sci. 252(5), 1581–1595 (2005)

    Article  Google Scholar 

  42. I. Novak, S. Florian, Investigation of long-term hydrophobic recovery of plasma modified polypropylene. J. Mater. Sci. 39(6), 2033–2036 (2004)

    Article  Google Scholar 

  43. I. Novak, V. Pollak, I. Chodak, Study of surface properties of polyolefins modified by corona discharge plasma. Plasma Process. Polym. 3(4–5), 355–364 (2006)

    Article  Google Scholar 

  44. A.J. Siddiqa, K. Chaudhury, B. Adhikari, Hydrophilic Low Density Polyethylene (LDPE) films for cell adhesion and proliferation. Res. Rev. J. Med. Org. Chem. 1(1), 43 (2015)

    Google Scholar 

  45. R.M. Sanchis, O. Calvo, L.S. Nchez, D. Garcia, R. Balart, Enhancement of wettability in low density polyethylene films using low pressure glow discharge N2 plasma. J. Polym. Sci., Part B Polym. Phys. 45, 2390–2399 (2007)

    Article  Google Scholar 

  46. A. Thabet, Experimental Investigation on Thermal Electric and Dielectric Characterization for Polypropylene Nanocomposites Using Cost-fewer Nanoparticles. Int. J. Electr. Eng. Technol 4(2), 1–12 (2013). ISSN 0976–6545(Print), ISSN 0976–6553(Online)

    Google Scholar 

  47. A. Thabet, Y.A. Mubarak, Predictable models and experimental measurements for electric properties of polypropylene nanocomposite films. Int. J. Electr. Comput. Eng. 6(1), 120–129 (2016)

    Google Scholar 

  48. A. Thabet, Experimental study for effects of cost-fewer nanoparticles on dielectric performance of polypropylene nanocomposites. Int. J. Electron. Electr. Eng. (IJEEE) 4(2), 134–139 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by Nanotechnology Research Center at Aswan University that is established by aided the Science and Technology Development Fund (STDF), Egypt, Grant No. Project ID 505, 2009–2011. Water surface tension measurements were done in Electronics and Nano Devices lab, Faculty of Science, South Valley University, Qena, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Thabet Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.T., Ahmed, K.E.A. Controlling on Attraction Forces of Water Droplets on Surfaces of Polypropylene Nanocomposites. Trans. Electr. Electron. Mater. 19, 387–395 (2018). https://doi.org/10.1007/s42341-018-0054-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0054-4

Keywords

Navigation