Skip to main content
Log in

Synergistic effect of micro- and nano-TiO2 on hydrophobic, mechanical, and electrical properties of hybrid polyurethane composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One of the ways to improve the performance of ceramic insulators in polluted climates is to use polymer coatings reinforced with ceramic particles. This study compares the hydrophobic, mechanical, and electrical properties of solely filled polyurethane (PU) with nanoparticles and co-filled PU with nano- and microparticles. Stearic acid was used as an inexpensive and environmentally friendly surface modifier. FTIR analysis was conducted to ensure that hydrophilic titanium dioxide changed to hydrophobic. Coated polyurethane–TiO2 and their free films containing 1 wt% and 3 wt% titania were compared with each other and the pure PU. AFM analysis and topography FESEM images showed a higher surface roughness in micro-nanocomposites (hybrid) compared to the nanocomposite samples. The maximum contact angle belonged to the hybrid sample containing 0.5 wt% nanoparticles and 0.5 wt% microparticles. The contact angle increased from 73° to 95°. The mechanical strength improved by 40%, and the electrical resistivity of the resulting composite increased about 3 times with the introduction of modified titanium dioxide. This study indicated that the synergistic effect of titania micro- and nanoparticles could cause more enhancement in contact angle, tensile strength, elongation, and electrical resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. T.V. Nguyen, T.A. Nguyen, T.H. Nguyen, J. Compos. Sci. 4, 23 (2020)

    Article  CAS  Google Scholar 

  2. S. Seyedmehdi, M. Ebrahimi, Prog. Org. Coat. 123, 134–137 (2018)

    Article  CAS  Google Scholar 

  3. S. Liu, X.Y. Zhang, J.B. Dai, L.M. Cheng, J. Dispers. Sci. Technol. 33, 977–982 (2012)

    Article  CAS  Google Scholar 

  4. S. Nayak, B. Sahoo, T.K. Chaki, D. Khastgir, RSC Adv. 3, 2620–2631 (2013)

    Article  CAS  Google Scholar 

  5. V.D. Da Silva, L.M. Dos Santos, S.M. Subda, R. Ligabue, M. Seferin et al., Polym. Bull. 70, 1819–1833 (2013)

    Article  CAS  Google Scholar 

  6. M.M. Jalili, K. Davoudi, E.Z. Sedigh, S. Farrokhpay, Adv. Powder Technol. 27, 2168–2174 (2016)

    Article  CAS  Google Scholar 

  7. E. Soleimani, R. Taheri, Nano-Struct. Nano-Objects 10, 167–175 (2017)

    Article  CAS  Google Scholar 

  8. J. Zhang, N. Zhang, Q. Liu, H. Ren, P. Li et al., Aust. J. Chem. 71, 47–57 (2017)

    Article  CAS  Google Scholar 

  9. M. Awais, M. Jalil, U. Zulfiqar, S. Husain, A facile approach towards fabrication of super hydrophobic surface from functionalized silica particles. in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2016)

  10. Q. Wang, S. Zhang, G. Liu, T. Lin, P. He, J. Alloys Compd. 820, 153184 (2020)

    Article  CAS  Google Scholar 

  11. Z.-M. Dang, J.-W. Zha, Y. Yu, T. Zhou, H.-T. Song et al., IEEE Trans. Dielectr. Electr. Insul. 18, 1518–1525 (2011)

    Article  CAS  Google Scholar 

  12. J.-W. Zha, Z.-M. Dang, W.-K. Li, Y.-H. Zhu, G. Chen, IEEE Trans. Dielectr. Electr. Insul. 21, 1989–1996 (2014)

    Article  CAS  Google Scholar 

  13. W. Wang, Y. Yang, Sci. Rep. 7, 1–10 (2017)

    Article  CAS  Google Scholar 

  14. A. Pegoretti, A. Dorigato, M. Brugnara, A. Penati, Eur. Polym. J. 44, 1662–1672 (2008)

    Article  CAS  Google Scholar 

  15. Z. Wang, F. Liu, E. Han, W. Ke, S. Luo, Chin. Sci. Bull. 54, 3464–3472 (2009)

    Article  CAS  Google Scholar 

  16. T.M.A. Bui, T.V. Nguyen, T.M. Nguyen, T.H. Hoang, T.T.H. Nguyen et al., Mater. Chem. Phys. 241, 122445 (2020)

    Article  CAS  Google Scholar 

  17. T.V. Nguyen, T.A. Nguyen, P.H. Dao, A.H. Nguyen, M.T. Do, Adv. Nat. Sci. NanoSci. NanoTechnol. 7, 045015 (2016)

    Article  CAS  Google Scholar 

  18. M. Akbar, R. Ullah, M.A. Karim, J. Electron. Mater. 49, 5399–5410 (2020)

    Article  CAS  Google Scholar 

  19. M. Amin, A. Khattak, M. Ali, Electr. Eng. 100, 217–230 (2018)

    Article  Google Scholar 

  20. M. Malaki, Y. Hashemzadeh, M. Karevan, Prog. Org. Coat. 101, 477–485 (2016)

    Article  CAS  Google Scholar 

  21. I. Hejazi, J. Seyfi, G.M.M. Sadeghi, S.H. Jafari, H.A. Khonakdar et al., Polymer 128, 108–118 (2017)

    Article  CAS  Google Scholar 

  22. Y.-H. Lai, M. Kuo, J. Huang, M. Chen, Mater. Sci. Eng. A 458, 158–169 (2007)

    Article  CAS  Google Scholar 

  23. S.I. Ali, S.R. Ali, M. Naeem, S.A. Haq, M. Mashhood et al., J. Basic Appl. Sci. 12, 339–343 (2016)

    Article  CAS  Google Scholar 

  24. Y. Qing, C. Yang, Y. Sun, Y. Zheng, X. Wang et al., Colloids Surf. A 484, 471–477 (2015)

    Article  CAS  Google Scholar 

  25. J. Qian, X. Yin, N. Wang, L. Liu, J. Xing, Appl. Surf. Sci. 258, 2778–2782 (2012)

    Article  CAS  Google Scholar 

  26. F. Arianpour, M. Farzaneh, Int. J. Theor. Appl. Nanatechnol. 1, 79–85 (2012)

    CAS  Google Scholar 

  27. J.-W. Zha, Y.-H. Zhu, W.-K. Li, J. Bai, Z.-M. Dang, Appl. Phys. Lett. 101, 062905 (2012)

    Article  CAS  Google Scholar 

  28. M. Abd El-Fattah, A.M. El Saeed, M. Dardir, M.A. El-Sockary, Prog. Org. Coat. 89, 212–219 (2015)

    Article  CAS  Google Scholar 

  29. S. Hassanajili, M.T. Sajedi, Iran. Polym. J. 25, 697–710 (2016)

    Article  Google Scholar 

  30. S. Nayak, T.K. Chaki, D. Khastgir, Polym. Bull. 74, 369–392 (2017)

    Article  CAS  Google Scholar 

  31. S. Mirabedini, M. Sabzi, J. Zohuriaan-Mehr, M. Atai, M. Behzadnasab, Appl. Surf. Sci. 257, 4196–4203 (2011)

    Article  CAS  Google Scholar 

  32. S. Nayak, R. Manna, M. Rahaman, T.K. Chaki, D. Khastgir, Polymer-ceramic composites with controlled dielectric properties: investigation on electrical & mechanical properties and modeling, in Conference Proceeding: European Society for Composite Materials (2014)

  33. S.M. Mirabedini, K. Khodabakhshi, Nanocomposites of PU Polymers Filled With Spherical Fillers, in Polyurethane Polymers (Elsevier, 2017), pp. 135–172

  34. F. Madidi, G. Momen, M. Farzaneh, Effect of filler concentration on dielectric properties of RTV silicone rubber/TiO2 nanocomposite, in 2013 IEEE Electrical Insulation Conference (EIC) (IEEE, 2013)

  35. J. Guo, Y. Chen, Z. Jia, T. Tanaka, J. Wu et al., Study on electrical properties of micro-nano structured epoxy composites, in Proceedings of 2014 International Symposium on Electrical Insulating Materials (IEEE, 2014)

  36. Y. Cheng, G. Yu, Z. Duan (2019) J. Nanomater. https://doi.org/10.1155/2019/9481415

    Article  Google Scholar 

  37. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12, 914–928 (2005)

    Article  CAS  Google Scholar 

  38. Y. Cheng, G. Yu, X. Zhang, B. Yu, Materials 13, 1432 (2020)

    Article  CAS  Google Scholar 

  39. S. Javadi, M.R. Kashani, P.N. Reis, Effect of particle size on dielectric properties of polystyrene/TiO2 composites, in 11th international seminar on polymer science and technology, 6–9 October 2014, Iran Polymer and Petrochemical Institute (Tehran, Iran, 2014)

  40. B. Mistry, E.A. Cherney, S. Ul, Huda, Organopolysiloxane rubber composition for coating high voltage electrical insulators having improved electrical properties (Google Patents, 1994)

  41. Y. Murakami, M. Nemoto, S. Okuzumi, S. Masuda, M. Nagao et al., IEEE Trans. Dielectr. Electr. Insul. 15, 33–39 (2008)

    Article  CAS  Google Scholar 

  42. M.T. Nazir, B. Phung, S. Li, S. Akram, M.A. Mehmood et al., J. Mater. Sci.: Mater. Electron. 30, 14061–14071 (2019)

    CAS  Google Scholar 

  43. W. Ahmed, M. Amin, K. Ahmed, S. Mehmood, H. Fayaz et al. (2020) J. Dispers. Sci. Technol. https://doi.org/10.1080/01932691.2020.1857262

    Article  Google Scholar 

  44. S. Yu, S. Li, S. Wang, Y. Huang, M.T. Nazir et al., IEEE Trans. Dielectr. Electr. Insul. 25, 1567–1576 (2018)

    Article  CAS  Google Scholar 

  45. G. Momen, M. Farzaneh, Rev. Adv. Mater. Sci. 27, 1–13 (2011)

    CAS  Google Scholar 

  46. M. Amrollahi, G.M.M. Sadeghi, Prog. Org. Coat. 93, 23–33 (2016)

    Article  CAS  Google Scholar 

  47. M. Esmaeilpour, B. Niroumand, A. Monshi, B. Ramezanzadeh, E. Salahi, Prog. Org. Coat. 90, 317–323 (2016)

    Article  CAS  Google Scholar 

  48. R.-Z. Zhang, Y.-Y. Ren, D.-K. Yan, P.-Y. Guo, L.-J. Li, Prog. Org. Coat. 104, 11–19 (2017)

    Article  CAS  Google Scholar 

  49. G. Wu, D. Liu, J. Chen, G. Liu, Z. Kong, Prog. Org. Coat. 127, 80–87 (2019)

    Article  CAS  Google Scholar 

  50. A. Eshaghi, A.A. Aghaei, Mater. Chem. Phys. 227, 318–323 (2019)

    Article  CAS  Google Scholar 

  51. B. Przybyszewski, A. Boczkowska, R. Kozera, J. Mora, P. Garcia et al., Coatings 9, 811 (2019)

    Article  CAS  Google Scholar 

  52. Z. Mazrouei-Sebdani, A. Khoddami, J. Text. Sci. Technol. 3, 23–38 (2013)

    Google Scholar 

  53. J.T. Simpson, S.R. Hunter, T. Aytug, Rep. Prog. Phys. 78, 086501 (2015)

    Article  CAS  Google Scholar 

  54. C. Pan, K. Kou, Q. Jia, Y. Zhang, Y. Wang et al., J. Mater. Sci.: Mater. Electron. 27, 11909–11916 (2016)

    CAS  Google Scholar 

  55. K. Malkappa, B.N. Rao, T. Jana, Polymer 99, 404–416 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Iran University of Science & Technology (School of Metallurgy and Materials Engineering) and Niroo Research Institute (Non-metallic Materials Research Department).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by LSK, BEY, HRR, and AZ. The first draft of the manuscript was written by LSK, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bijan Eftekhari Yekta.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi-Kashani, L., Yekta, B.E., Rezaie, H.R. et al. Synergistic effect of micro- and nano-TiO2 on hydrophobic, mechanical, and electrical properties of hybrid polyurethane composites. J Mater Sci: Mater Electron 33, 14488–14507 (2022). https://doi.org/10.1007/s10854-022-08370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08370-y

Navigation