Skip to main content
Log in

Evaluation of dielectric properties for PVC/SiO2 nanocomposites under the effect of water absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Adding nanoparticles (NPs) to a base polymer matrix which is known as nanocomposites results in improving its dielectric properties. In this paper, the evaluation of polyvinyl chloride (PVC)/silica nanoparticles (SiO2) nanocomposites is carried out considering the effect of water absorption. PVC nanocomposites are prepared considering different filler loadings of SiO2 NPs (1, 2.5, 5, and 7.5 wt%). The preparation of PVC/SiO2 nanocomposites is chemically carried out by casting the solution. The chemical structure of PVC/SiO2 nanocomposites after water adsorption is investigated by Fourier transform infrared (FTIR) spectroscopy. The effect of water absorption is carried out by immersing nanocomposite samples in tap water. The AC breakdown strength of PVC/SiO2 nanocomposites is measured before and after water immersion. In addition, both dielectric constant (έ) and loss tangent (tan δ) are measured considering different frequencies before and after the water immersion. The results show that the dielectric properties of PVC/SiO2 nanocomposites are significantly affected by water absorption, where PVC/SiO2 nanocomposite sample with filler loading of 7.5 wt% is found to have lower water absorption compared to the other adopted filler loadings. Under the effect of water absorption, the breakdown strength of the base and PVC nanocomposite samples is decreased, and its value for PVC nanocomposite still exceeds the base polymer. Finally, the dielectric constant and dielectric loss of PVC samples are increased under the effect of water absorption. The increase in dielectric constant and dielectric loss is small at the higher filler loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This declaration is not applicable.

References

  1. A. King, V.H. Wentworth, Raw materials for electric cables (Ernest Benn Ltd. Press, London, UK, 1954)

    Google Scholar 

  2. K. Barber, G. Alexander, Insulation of electrical cables over the past 50 years. IEEE Electr. Insul. Mag. 29(3), 27–32 (2013)

    Article  Google Scholar 

  3. S.A. Mansour, R.A. Elsad, M.A. Izzularab, Dielectric spectroscopic analysis of polyvinyl chloride nanocomposites loaded with Fe2O3 nanocrystals. Polym. Adv. Technol. 29(9), 2477–2485 (2018)

    Article  CAS  Google Scholar 

  4. S.A. Mansour, R.A. Elsad, M.A. Izzularab, Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. Polym. Res. J. 23(5), 978–985 (2016)

    Article  Google Scholar 

  5. S.A. Mansour, R.A. Elsad, M.A. Izzularab, Dielectric investigation of high-density polyethylene loaded by ZnO nanoparticles synthesized by sol-gel route. J. Sol-Gel Sci. Technol. 80(2), 333–341 (2016)

    Article  CAS  Google Scholar 

  6. S.F.A. Ali, R.A. Elsad, S.A. Mansour, Enhancing the dielectric properties of compatibilized high-density polyethylene/calcium carbonate nanocomposites using high-density polyethylene-g-maleic anhydride. Polym. Bull. 10, 10–13 (2020)

    Google Scholar 

  7. R.A. Elsad, S.A. Mansour, M.A. Izzularab, Loading different sizes of titania nanoparticles into transformer oil: a study on the dielectric behavior. J. Sol-Gel. Sci. Technol. 93, 615–622 (2019)

    Article  Google Scholar 

  8. M.M. Habashy, A.M. Abd-Elhady, R.A. Elsad, M.A. Izzularab, Performance of PVC/SiO2 nanocomposites under thermal ageing. Appl. Nanosci. 11(4), 1–9 (2021)

    Google Scholar 

  9. A.T. Mohamed, Thermal experimental verification on effects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride. Measurement 89, 28–33 (2016)

    Article  Google Scholar 

  10. F. Ciuprina, L. Andrei, Effects of temperature and nanoparticles on dielectric properties of PVC. U.P.B. Sci. Bull. Series C 77(4), 383–392 (2015)

    Google Scholar 

  11. Y. Thakur, T. Zhang, C. lacob, T. Yang, J. Bernholc, L.Q. Chen, J. Runt, Q.M. Zhang, Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9(31), 10992–10997 (2017)

    Article  CAS  Google Scholar 

  12. R.D. Priestley, P. Rittigstein, L.J. Broadbelt, K. Fukao, J.M. Torkelson, Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer–silica nanocomposites. J. Phys. 19(20), 2996–3005 (2007)

    Google Scholar 

  13. Z. Wang, W. Zhou, X. Sui, L. Dong, H. Cai, J. Zuo, Q. Chen, Temperature-dependent dielectric properties of Al/epoxy nanocomposites. J. Electron. Mater. 45(6), 3069–3078 (2016)

    Article  CAS  Google Scholar 

  14. F. Ciuprina, A. Hornea, M.-G. Barbuta, Influence of temperature on dielectric performance of epoxy nanocomposites with inorganic nanofillers. U.P.B. Sci. Bull. Series A 75(3), 159–168 (2013)

    Google Scholar 

  15. A. Thabet, Y.A. Mobarak, M. Bakry, A review of Nano-fillers effects on industrial polymers and their characteristics. J. Eng. Sci. Assiut Univ. 39(2), 377–403 (2011)

    Google Scholar 

  16. N. Tagami, M. Okada, N. Hirai, Y. Ohki, T. Tanaka, T. Imai, M. Harada, M. Ochi, Dielectric properties of epoxy/clay nanocomposites—Effects of curing agent and clay dispersion method. IEEE Trans. Dielectr. Electr. Insul. 15(1), 24–32 (2008)

    Article  CAS  Google Scholar 

  17. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Effects of mica fillers on dielectric properties of polyamide nanocomposites. IEEE Conference on Electrical Insulation and Dielectric Phenomena, Nashville, USA, 2005

  18. C. P. Sugumaran, Diagnosis on mechanical and electrical properties of cable insulation PVC with nanofiller. IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Kolkata, India, 2013

  19. D.E. Selvaraj, R. Vijayaraj, U. Satheeshwaran, J. Nancy, C.P. Sugumaran, M.R. Kumar, J. Ganesan, S. Geethadevi, S.D. Kumar, Experimental investigation on electrical and mechanical characteristics of PVC cable insulation with silica nanofiller. Appl. Mech. Mater. 749, 159–163 (2015)

    Article  Google Scholar 

  20. T. Thenthiruppathi, R. Harish, R. Ramkumar, Analysis on dielectric and mechanical properties of power cable with nanocomposites. Int. J. Eng. Trends Technol. 11(3), 150–153 (2014)

    Article  Google Scholar 

  21. C.P. Sugumaran, Experimental study on dielectric and mechanical properties of PVC cable insulation with SiO2/ CaCO3 nanofillers. IEEE Conference on Electrical Insulation and Dielectric Phenomena, Ann Arbor, MI, USA, 2015

  22. R.A. Elsad, M.S. EL-Wazery, A.M. EL-Kelity, Effect of water absorption on the tensile characteristics of natural/ synthetic fabrics reinforced hybrid composites. IJE Trans. B 33(11), 2339–2346 (2020)

    Google Scholar 

  23. H. Alamri, I.M. Low, Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater. Des. (2012). https://doi.org/10.1016/j.matdes.2012.05.060

    Article  Google Scholar 

  24. H. Zhao, K.Y. Robert Li, Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos. Part A 39(4), 602–611 (2008)

    Article  Google Scholar 

  25. C. Zou, Jc. Fothergill, S.W. Rowe, The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielect. Electr. Insul. 15(1), 106–117 (2008)

    Article  CAS  Google Scholar 

  26. Ph. Marx, A.J. Wanner, Z. Zhang, H. Jin, I.A. Tsekmes, J.J. Smit, W. Kern, F. Wiesbrock, Effect of interfacial polarization and water absorption on the dielectric properties of epoxy-nanocomposites. Polymers 9(12), 195 (2017)

    Article  Google Scholar 

  27. H. Zhao, K.Y. Robert Li, Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Key Eng. Mater. 334–335, 617–620 (2007)

    Article  Google Scholar 

  28. B.K. Deka, T.K. Maji, Effect of SiO2 and nano clay on the properties of wood polymer nanocomposite. Polym. Bull. 70(2), 403–417 (2012)

    Article  Google Scholar 

  29. P. Ketsamee, T. Andritsch, A. Vaughan, The effects of humidity on dielectric permittivity of surface modified TiO2 and MgO based polypropylene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 30(1), 82–89 (2022)

    Article  Google Scholar 

  30. X. Wang, D. Qiang, I. Hosier, Y. Zhu, G. Chen, Th. Andritsch, Effect of water on the breakdown and dielectric response of polypropylene/nano-aluminum nitride composites. J. Mater. Sci. 55, 8900–8916 (2020)

    Article  CAS  Google Scholar 

  31. M. Azman, L.K. Yiew, Effect of water on polypropylene/barium titanate nanocomposites. J. Electr. Eng. ELEKTRIKA 19(2), 53–58 (2020)

    Article  Google Scholar 

  32. M.M. Yaacob, N. Kamaruddin, N.A. Mazlan, N.F. Noramat, M.A. Alsaedi, A. Aman, Dielectric properties of polyvinyl chloride with wollastonite filler for the application of high-voltage outdoor insulation material. Arab. J. Sci. Eng. 39(5), 3999–4012 (2014)

    Article  CAS  Google Scholar 

  33. J.H. Nahida, Z.M. Ali, A study of the effect of silica particles addition on some physical properties of PVC as a packaging material. Iraqi J. Phys. 13(26), 76–91 (2015)

    Google Scholar 

  34. D570–98 Standard Test Method for Water Absorption of Plastics, pp. 1–4, 1999

  35. T.N. Tran, T.V.A. Pham, M.L. Le Phung, T.P.T. Nguyen, V.M. Tran, Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Adv. Nat. Sci. (2013). https://doi.org/10.1088/2043-6262/4/4/045007

    Article  Google Scholar 

  36. F. M. Nor, I. Abdullah, R. Othaman, Gas permeability of ENR/PVC membrane with the addition of inorganic fillers. AIP Conference Proceedings, vol. 1571, No. 1, pp. 911–917, 2013

  37. M. Arsalan, Rafiuddin, Synthesis, characterization and electrochemical observation of PVC based ZMP composite porous membrane and its physicochemical studies by applying some strong electrolytes through TMS equation. J. SolidState Electrochem. 19, 2283–2290 (2015)

    Article  CAS  Google Scholar 

  38. K. Deshmukh, S.M. Khatake, G.M. Joshi, Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J. Polym. Res. (2013). https://doi.org/10.1007/s10965-013-0286-2

    Article  Google Scholar 

  39. A. Ul-Hamid, K.Y. Soufi, L.M. Al-Hadhrami, A.M. Shemsi, Failure investigation of an underground low voltage XLPE insulated cable. Anti-Corrosion Methods Mater. (2015). https://doi.org/10.1108/ACMM-02-2014-1352

    Article  Google Scholar 

  40. L.T. Zhuravlev, Surface characterization of amorphous silica—A review of work from the former USSR.7. Colloids Surf. A 74(1), 71–90 (1993)

    Article  CAS  Google Scholar 

  41. G.S. Nambafu, N. Kim, J. Kim, Hydrophobic coatings prepared using various dipodal silane-functionalized polymer precursors. Appl. Surf. Sci. Adv. (2022). https://doi.org/10.1016/j.apsadv.2021.100207

    Article  Google Scholar 

  42. D.Y. Nadargi, J.L. Gurav, N. El Hawi, A.V. Rao, M. Koebel, Synthesis and characterization of transparent hydrophobic silica thin films by single step sol–gel process and dip coating. J. Alloy. Compd. 496, 436–441 (2010)

    Article  CAS  Google Scholar 

  43. R.E. Saputra, Y. Astuti, A. Darmawan, Hydrophobicity of silica thin films: The deconvolution and interpretation by Fourier-transform infrared spectroscopy. Spectrochim. Acta Part A 199, 12–20 (2018)

    Article  CAS  Google Scholar 

  44. Z. Li, X. Li, S. Petrovic´, D.J. Harrison, Dual-sorption model of water uptake in poly (vinyl chloride)-based ion-selective membranes: experimental water concentration and transport parameters. Anal. Chem. 68(10), 1717–1725 (1996)

    Article  CAS  Google Scholar 

  45. H. D. Jang, D. S. Kil, H. Chang, K. Cho, S. K. Kim, K. J. Oh, Preparation of hydrophobic nanostructured silica particles by aerosol assisted self-assembly. 10th IEEE International Conference on Nanotechnology, Kintex, Korea, 2010

  46. Sh. Ammar, K. Ramesh, I.A.W. Ma, Z. Farah, B. Vengadaesvaran, S. Ramesh, A.K. Arof, Studies on SiO2-hybrid polymeric nanocomposite coatings with superior corrosion protection and hydrophobicity. Surf. Coat. Technol. 324, 536–545 (2017)

    Article  CAS  Google Scholar 

  47. S. Pourhashem, M.R. Vaezi, A.M. Rashidi, Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings. Surf. Coat. Technol. 311, 282–294 (2017)

    Article  CAS  Google Scholar 

  48. S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)

    Article  CAS  Google Scholar 

  49. J.P. Reddy, A.V. Rajulu, J.-W. Rhim, J. Seo, Mechanical, thermal, and water vapor barrier properties of regenerated cellulose/nano-SiO2 composite films. Cellulose 25(12), 7153–7165 (2018)

    Article  CAS  Google Scholar 

  50. M.E. Ibrahim, M.A. Taman, M.A. Izzularab, A.M. Abd-Elhady, Effect of external electric field during sample preparation on dielectric properties of PVC nanocomposites. Electr. Eng. (2022). https://doi.org/10.1007/s00202-022-01708-z

    Article  Google Scholar 

  51. A.M. Abd-Elhady, A.Y. Sleet, M.A. Izzularab, M.E. Ibrahim, Polystyrene/silicone rubber blends with improved dielectric properties. Electr. Eng. (2023). https://doi.org/10.1007/s00202-023-01756-z

    Article  Google Scholar 

  52. L. Hui, L.S. Schadler, J.K. Nelson, The influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20(2), 641–653 (2013)

    Article  CAS  Google Scholar 

  53. A. Kyritsis, P. Pissis, J. Grammatikakis, Dielectric relaxation spectroscopy in poly (hydroxyethy1 acrylates)/water hydrogels. J. Polym. Sci. 33(12), 1737–1750 (1995)

    Article  CAS  Google Scholar 

Download references

Funding

No funding is applicable.

Author information

Authors and Affiliations

Authors

Contributions

RAE, MMH, MAI, and AMAE wrote the main manuscript text, and MMH prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to R. A. Elsad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsad, R.A., Habashy, M.M., Izzularab, M.A. et al. Evaluation of dielectric properties for PVC/SiO2 nanocomposites under the effect of water absorption. J Mater Sci: Mater Electron 34, 786 (2023). https://doi.org/10.1007/s10854-023-10199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10199-y

Navigation