Skip to main content

Advertisement

Log in

In situ generated MWCNT-FeF3·0.33 H2O nanocomposites toward stable performance cathode material for lithium ion batteries

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A hydrated iron(III) fluoride (FeF3·0.33 H2O) and hydrated multi-walled carbon nanotubes-iron(III) fluoride (MWCNT-FeF3·0.33 H2O) composites were prepared by a simple two-step method. Firstly, a wet chemistry reaction between iron(III) nitrate nonahydrate (Fe(NO3)3·9H2O) and ammonium fluoride (NH4F). The thermal decomposition of the mixture in the absence and presence of MWCNTs at 200 °C under argon atmosphere forms FeF3·0.33 H2O and MWCNT-FeF3·0.33 H2O. Powder X-ray diffraction, Raman spectroscopy, and scanning electron microscopy confirmed the formation of both FeF3·0.33 H2O and MWCNT-FeF3·0.33 H2O composites, with well-distributed hexagonal shape structure with particle size ranging from 500 to 650 nm. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge discharge (GCD) were performed to test MWCNT-FeF3·0.33 H2O composite cathode in half-cell using Li metal as counter and reference electrode and 1 M LiPF6 in mixture of organic carbonate electrolyte. It was found that the battery delivers a constant voltage of 2.95 V. CV results showed that MWCNTs-FeF3·0.33 H2O composite exhibits reversible and reproducible electrochemical conversion reactions, and stabilized solid–electrolyte interface during cycling. GCD profile displayed an irreversible lithiation/delithiation processes in the first cycle due to the decomposition of the electrolyte and the formation of SEI. However, specific charge capacity was at around 498 mAh/g (greater than commercial lithium cobalt oxide cathodes ~ 140 mAh/g) after 50 cycles with an average Coulombic efficiency of 95%. The excellent electrochemical performance makes from MWCNTs-FeF3·0.33 H2O a good candidate cathode material to replace conventional materials for LIBs in applications requiring high energy density and long cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4301 (2004). https://doi.org/10.1021/cr020731c

  2. D. Ponnamma, M.A.A. Al-maadeed, Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO 3 for mechanical energy harvesting. Emergent Mater. 1, 55–65 (2018)

    Article  Google Scholar 

  3. F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingham, C.P. Grey, G.G. Amatucci, Y. Zhu, J. Graetz, Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011). https://doi.org/10.1021/ja206268a

    Article  Google Scholar 

  4. G. Ali, J.H. Lee, W. Chang, et al., Lithium intercalation mechanism into FeF3·0.5H2O as a highly stable composite cathode material. Sci. Rep. 7(January), 1–8 (2017). https://doi.org/10.1038/srep42237

    Google Scholar 

  5. F. Wu, G. Yushin, Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10(2), 435–459 (2017). https://doi.org/10.1039/c6ee02326f

    Article  Google Scholar 

  6. H. Pang, X. Xiao, N.N. Zhang, Transition metal (Fe, Co, Ni) fluoride-based materials for electrochemical energy storage. Nanoscale Horizons. 4, 99–116 (2018). https://doi.org/10.1039/C8NH00144H

    Google Scholar 

  7. G.G. Amatucci, N. Pereira, Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128(4), 243–262 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.016

    Article  Google Scholar 

  8. N. Yamakawa, M. Jiang, B. Key, C.P. Grey, Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J. Am. Chem. Soc. 131(30), 10525–10536 (2009). https://doi.org/10.1021/ja902639w

  9. F. Badway, A.N. Mansour, N. Pereira, J.F. al-Sharab, F. Cosandey, I. Plitz, G.G. Amatucci, Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem. Mater. 19(17), 4129–4141 (2007). https://doi.org/10.1021/cm070421g

    Article  Google Scholar 

  10. F. Badway, F. Cosandey, N. Pereira, G.G. Amatucci, Carbon metal fluoride nanocomposites. J. Electrochem. Soc. 150(10), A1318 (2003). https://doi.org/10.1149/1.1602454

    Article  Google Scholar 

  11. X. Zhou, H. Sun, H. Zhou, J. Ding, Z. Xu, W. Bin, J. Tang, J. Yang, Enhancing the lithium storage capacity of FeF3cathode material by introducing C@LiF additive. J. Electroanal. Chem. 810(2017), 41–47 (2018). https://doi.org/10.1016/j.jelechem.2018.01.002

    Article  Google Scholar 

  12. A.N. Mansour, F. Badway, W.S. Yoon, K.Y. Chung, G.G. Amatucci, In situ X-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF2MoO3 nanocomposite. J. Solid State Chem. 183(12), 3029–3038 (2010). https://doi.org/10.1016/j.jssc.2010.09.029

    Article  Google Scholar 

  13. X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han, S. Hwang, J. Liu, S. Bak, Z. Ma, T. Gao, S.C. Liou, J. Bai, X.Q. Yang, Y. Mo, K. Xu, D. Su, C. Wang, High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun. 9(1), 1–12 (2018). https://doi.org/10.1038/s41467-018-04476-2

    Article  Google Scholar 

  14. X. Xu, S. Chen, M. Shui, L. Xu, W. Zheng, J. Shu, L. Cheng, L. Feng, Y. Ren, The differentiation of elementary polarizations of FeF3·3H2O/C cathode material in LIB. Ionics (Kiel). 21(4), 1003–1010 (2015). https://doi.org/10.1007/s11581-014-1244-7

    Article  Google Scholar 

  15. S. Wei, X. Wang, M. Jiang, R. Zhang, Y. Shen, H. Hu, The FeF3·0.33H2O/C nanocomposite with open mesoporous structure as high-capacity cathode material for lithium/sodium ion batteries. J. Alloys Compd. 689, 945–951 (2016). https://doi.org/10.1016/j.jallcom.2016.08.080

    Article  Google Scholar 

  16. Y. Zhang, L. Wang, J. Li, X. He, L. Wen, Electrochemical performance of FeF 3 • 0. 33H2O / MWCNTs composite cathode synthesized by solvothermal process. 109, 103–109 (2015)

  17. D.-L. Ma, H.-G. Wang, Y. Li, et al., In situ generated FeF3in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano Energy 10, 295–304 (2014). https://doi.org/10.1016/j.nanoen.2014.10.004

    Article  Google Scholar 

  18. W. Li, Y. Li, M. Fang, X. Yao, T. Li, M. Shui, J. Shu, The facile in situ preparation and characterization of C/FeOF/FeF3 nanocomposites as LIB cathode materials. Ionics (Kiel). 24(6), 1561–1569 (2018). https://doi.org/10.1007/s11581-017-2334-0

    Article  Google Scholar 

  19. M. Nishijima, I.D. Gocheva, S. Okada, T. Doi, J. Yamaki-ichi, T. Nishida, Cathode properties of metal trifluorides in Li and Na secondary batteries. J. Power Sources 190(2), 558–562 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.051

    Article  Google Scholar 

  20. N. Bensalah, D. Turki, F.Z. Kamand, K. Saoud, Hierarchical nanostructured MWCNT–MnF2 composites with stable electrochemical properties as cathode material for lithium ion batteries. Phys Status Solidi Appl Mater Sci. 215(14), 1–11 (2018). https://doi.org/10.1002/pssa.201800151

    Google Scholar 

  21. H. Arai, S. Okada, Y. Sakurai, J.I. Yamaki, Cathode performance and voltage estimation of metal trihalides. J. Power Sources 68(2), 716–719 (1997). https://doi.org/10.1016/S0378-7753(96)02580-3

    Article  Google Scholar 

  22. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng. 02(03), 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020

    Article  Google Scholar 

  23. J. Lee, B. Kang, Superior electrochemical performance of N-doped nanocrystalline FeF3/C with a single-step solid-state process. Chem. Commun. 52(81), 12100–12103 (2016). https://doi.org/10.1039/c6cc06556b

    Article  Google Scholar 

Download references

Acknowledgments

The contents of the study are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund.

Funding

This work was funded by a grant from the Qatar National Research Fund under its National Priorities Research Program award number NPRP7-567-2-216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasr Bensalah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensalah, N., Mustafa, N. In situ generated MWCNT-FeF3·0.33 H2O nanocomposites toward stable performance cathode material for lithium ion batteries. emergent mater. 2, 59–66 (2019). https://doi.org/10.1007/s42247-018-00021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-00021-5

Keywords

Navigation