Skip to main content
Log in

Numerical analysis of role of melting rate on electroslag remelting continuous directional solidification of a die steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of melting rate on the temperature distribution, velocity field, macrosegregation and dendrite arm spacing during electroslag remelting continuous directional solidification process with a mould of 160 mm in diameter was investigated. The mechanism of solute transport and dendrite growth of austenitic hot-work die steel during electroslag remelting process was proposed. The results showed that a lower melting rate contributed to a higher temperature gradient as well as a shallower liquid metal molten pool. With the increase in the melting rate, the central counterclockwise vortex in the slag and clockwise vortex in the liquid metal molten pool grew, whereas the marginal clockwise vortex in the slag reduced. With increasing melting rate, the macrosegregation of carbon became more serious, whereas the average value of secondary dendrite arm spacing first decreased and then increased. The secondary dendrite arm spacing reached a minimum value at melting rate of 98 kg/h, which indicated that 98 kg/h was a proper melting rate for electroslag remelting continuous directional solidification process with a mould of 160 mm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Kharicha, E. Karimi-Sibaki, M.H. Wu, A. Ludwig, J. Bohacek, Steel Res. Int. 89 (2018) 1700100.

    Article  Google Scholar 

  2. Q. Wang, H.G. Yan, N. Ren, B.K. Li, Appl. Therm. Eng. 101 (2016) 564–567.

    Article  Google Scholar 

  3. M. Kubin, B. Ofner, H. Holzgruber, R. Schneider, D. Enzenhofer, A. Filzwieser, S. Konetschnik, IOP Conf. Ser. Mater. Sci. Eng. 143 (2016) 012004.

  4. Q. Wang, B. Li, Appl. Therm. Eng. 91 (2015) 116–125.

    Article  Google Scholar 

  5. Q. Wang, H. Cai, L.P. Pan, Z. He, S. Liu, B.K. Li, JOM 68 (2016) 3143–3149.

    Article  Google Scholar 

  6. L. Nastac, S. Sundarraj, K.O. Yu, Y. Pang, JOM 50 (1998) 30–35.

    Article  Google Scholar 

  7. K. Fezi, J. Yanke, M.J.M. Krane, Metall. Mater. Trans. B 46 (2015) 766–779.

    Article  Google Scholar 

  8. Q. Wang, Z. He, G.Q. Li, B.K. Li, Appl. Therm. Eng. 103 (2016) 419–427.

    Article  Google Scholar 

  9. K.M. Kelkar, S.V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J. de Barbadillo, R.H. Smith, R.C. Helmink, A. Mitchell, H.A. Sizek, in: Proc. 2013 Int. Symp. on Liquid Metal Processing and Casting, TMS, Pittsburgh, PA, USA, 2013, pp. 3.

  10. R.M. Geng, J. Li, C.B. Shi, Q.T. Zhu, J. Zhang, Metall. Res. Technol. 114 (2017) 614.

    Article  Google Scholar 

  11. C.B. Shi, W.T. Yu, H. Wang, J. Li, M. Jiang, Metall. Mater. Trans. B 48 (2017) 146–161.

    Article  Google Scholar 

  12. C.B. Shi, Q.T. Zhu, W.T. Yu, H.D. Song, J. Li, J. Mater. Eng. Perform. 25 (2016) 4785–4795.

    Article  Google Scholar 

  13. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, X.L. Sun, Metall. Mater. Trans. B 44 (2013) 378–389.

    Article  Google Scholar 

  14. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, H. Ren, Steel Res. Int. 83 (2012) 472–486.

    Article  Google Scholar 

  15. S.H. Suh, J. Choi, Trans. ISIJ 26 (1986) 305–309.

    Article  Google Scholar 

  16. V.I. Chumanov, I.V. Chumanov, Russ. Metall. 2011 (2011) 515.

    Article  Google Scholar 

  17. J. Gu, J. Li, J. Yanagimoto, W. Li, L. Li, Mater. Sci. Eng. A 804 (2021) 140721.

  18. W. Li, J. Li, J. Gu, Q. Zhang, Vacuum 191 (2021) 110361.

  19. H. Wang, Y.B. Zhong, Q. Li, Y.P. Fang, W.L. Ren, Z.S. Lei, Z.M. Ren, Metall. Mater. Trans. B 48 (2017) 655–663.

    Article  Google Scholar 

  20. Y.W. Dong, Z.H. Jiang, H.B. Cao, X. Wang, Y.L. Cao, D. Hou, ISIJ Int. 56 (2016) 1386–1393.

    Article  Google Scholar 

  21. Y.W. Dong, Z.W. Hou, Z.H. Jiang, H.B. Cao, Q.L. Feng, Y.L. Cao, Metall. Mater. Trans. B 49 (2018) 349–360.

    Article  Google Scholar 

  22. X.F. Shi, L.Z. Chang, Z.H. Zhu, J.J. Wang, L. Zhou, J. Iron Steel Res. Int. 23 (2016) 1168–1176.

    Article  Google Scholar 

  23. X.F. Shi, L.Z. Chang, J.J. Wang, Int. J. Miner. Metall. Mater. 24 (2017) 139–146.

    Article  Google Scholar 

  24. F. Wang, Q. Wang, Y.C. Lou, R. Chen, Z.W. Song, B.K. Li, JOM 68 (2015) 410–420.

    Article  Google Scholar 

  25. F. Wang, Q. Wang, B.K. Li, ISIJ Int. 57 (2017) 91–99.

    Article  Google Scholar 

  26. R. Fu, F.L. Li, F.J. Yin, D. Feng, Z.L. Tian, L.T. Chang, Mater. Sci. Eng. A 638 (2015) 152–164.

    Article  Google Scholar 

  27. F.L. Li, R. Fu, D. Feng, F.J. Yin, Z.L. Tian, Rare Metal. Mater. Eng. 45 (2016) 1437–1442.

  28. Y.F. Qi, J. Li, C.B. Shi, Y. Zhang, Q.T. Zhu, H. Wang, J. Mater. Process. Technol. 249 (2017) 32–38.

    Article  Google Scholar 

  29. C.S. Xie, P.Z. Sun, J.S. Zhao, Mater. Sci. Eng. A 124 (1990) 203–209.

    Article  Google Scholar 

  30. V.Y. Grabovskii, V.I. Kanyuka, Met. Sci. Heat Treat. 43 (2001) 402–405.

    Article  Google Scholar 

  31. Y.F. Qi, J. Li, C.B. Shi, R.M. Geng, J. Zhang, ISIJ Int. 58 (2018) 1275–1284.

    Article  Google Scholar 

  32. Q.T. Zhu, J. Li, C.B. Shi, W.T. Yu, Int. J. Miner. Metall. Mater. 22 (2015) 1149–1156.

    Article  Google Scholar 

  33. D. Yao, J. Li, J.H. Li, Q.T. Zhu, Mater. Manuf. Process. 30 (2015) 111–115.

    Article  Google Scholar 

  34. K.S. Cho, S.I. Kim, S.S. Park, W.S. Choi, H.K. Moon, H. Kwon, Metall. Mater. Trans. A 47 (2016) 26–32.

    Article  Google Scholar 

  35. N. Hashemi, A. Mertens, H.M. Montrieux, J.T. Tchuindjang, O. Dedry, R. Carrus, J. Lecomte-Beckers, Surf. Coat. Technol. 315 (2017) 519–529.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong YangFan Innovative & Entrepreneurial Research Team Program (Grant No. 2016YT03C071) and the Guangdong Science and Technology Special Fund Project (Grant No. SDZX202005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, J. & Shi, Cb. Numerical analysis of role of melting rate on electroslag remelting continuous directional solidification of a die steel. J. Iron Steel Res. Int. 28, 1617–1624 (2021). https://doi.org/10.1007/s42243-021-00720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00720-0

Keywords

Navigation