Skip to main content
Log in

An overview of flow field computational methods for hydrodynamic noise prediction

  • Special Column on the 33Rd NCHD-First Rart (Guest Editor Zheng Ma)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Recently, the hydrodynamic noise is becoming a research hotspot because it not only affects the concealment and comfort of ships, but also affects the living condition of underwater mammals. Accurate prediction of hydrodynamic noise requires that the detailed flow field has been simulated temporally and spatially with high fidelity method. In this paper, we introduce the current issues and challenges for the prediction of hydrodynamic noise, and provide an overview to several detailed flow field simulation methods which aim to resolve these issues. The overview could point the future directions for hydrodynamic noise prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suresh T., Szulc O., Flaszynski P. et al. Prediction of helicopter rotor noise in hover using FW-H analogy [J]. Journal of Physics: Conference Series, 2018, 1101(1): 012041.

    Google Scholar 

  2. Spalart P. R., Belyaev K. V., Shur M. L. et al. On the differences in noise predictions based on solid and permeable surface Ffowcs Williams—Hawkings integral solutions [J]. International Journal of Aeroacoustics, 2019, 18(6–7): 621–646.

    Article  Google Scholar 

  3. Turner J. M., Kim J. W. Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall [J]. Physics of Fluids, 2020, 32(6): 065103.

    Article  Google Scholar 

  4. Choi W. S., Choi Y., Hong S. Y. et al. Turbulence-induced noise of a submerged cylinder using a permeable FW-H method[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3): 235–242.

    Article  Google Scholar 

  5. Posa A., Felli M., Broglia R. Influence of an upstream hydrofoil on the acoustic signature of a propeller [J]. Physics of Fluids, 2022, 34(4): 045112.

    Article  Google Scholar 

  6. Slotnick J. P., Khodadoust A., Alonso J. et al. CFD vision 2030 study: A path to revolutionary computational aerosciences [R]. NF1676L-18332, 2014.

  7. Larsson J., Kawai S., Bodart J. et al. Large eddy simulation with modeled wall-stress: Recent progress and future directions [J]. Mechanical Engineering Reviews, 2016, 3(1): 1–23.

    Article  Google Scholar 

  8. Suga K., Sakamoto T., Kuwata Y. Algebraic non-equilibrium wall-stress modeling for large eddy simulation based on analytical integration of the thin boundary-layer equation [J]. Physics of Fluids, 2019, 31(7): 075109.

    Article  Google Scholar 

  9. Lozano-Durán A., Giometto M. G., Park G. I. et al. Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers [J]. Journal of Fluid Mechanics, 2020, 883: A20.

    Article  MathSciNet  MATH  Google Scholar 

  10. Iyer P. S., Malik M. R. Analysis of the equilibrium wall model for high-speed turbulent flows [J]. Physical Review Fluids, 2019, 4(7): 074604.

    Article  Google Scholar 

  11. Mehrabadi M., Bodony D. J. Wall-modeled large-eddy simulation and direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil [C]. 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 2019.

  12. Boukharfane R., Parsani M., Bodart J. Characterization of pressure fluctuations within a controlled-diffusion blade boundary layer using the equilibrium wall-modelled LES [J]. Scientific Reports, 2020, 10(1): 12735.

    Article  Google Scholar 

  13. Posa A., Broglia R., Felli M. et al. Hydroacoustic analysis of a marine propeller using large-eddy simulation and acoustic analogy [J]. Journal of Fluid Mechanics, 2022, 947: A46.

    Article  MathSciNet  MATH  Google Scholar 

  14. Shu C. W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes [J]. Acta Numerica, 2020, 29: 701–762.

    Article  MathSciNet  Google Scholar 

  15. Brus S. R., Wirasaet D., Kubatko E. J. et al. High-order discontinuous Galerkin methods for coastal hydrodynamics applications [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 860–899.

    Article  MathSciNet  MATH  Google Scholar 

  16. Huismann I., Stiller J., Fröhlich J. Efficient high-order spectral element discretizations for building block operators of CFD [J]. Computers and Fluids, 2020, 197: 104386.

    Article  MathSciNet  MATH  Google Scholar 

  17. Vincent P. E., Farrington A. M., Witherden F. D. et al. An extended range of stable-symmetric-conservative Flux Reconstruction correction functions [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 296: 248–272.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu Y. S., Zhang P. J. Y., Wan Z. H. et al. Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle [J]. Physics of Fluids, 2022, 34(10): 105108.

    Article  Google Scholar 

  19. Marino O. A., Ferrer E., Valero E., et al. Aeroacoustic simulations of 3D airfoil sections using a high order discontinuous Galerkin solver [C]. AIAA SCITECH 2022 Forum, San Diego, California, USA, 2021.

  20. Alhawwary M. A., Wang Z. J. Implementation of a FWH approach in a high-order LES tool for aeroacoustic noise predictions [C]. AIAA Scitech 2020 Forum, Orlando, Florida, USA, 2020.

  21. Shen W., Miller S. A. E. Validation of a high-order large eddy simulation solver for acoustic prediction of supersonic jet flow [J]. Journal of Theoretical and Computational Acoustics, 2020, 28(3): 1950023.

    Article  MathSciNet  Google Scholar 

  22. Ren Z., Wang J., Wan D. Investigation of fine viscous flow fields in ship planar motion mechanism tests by DDES and RANS methods [J]. Ocean Engineering, 2022, 243: 110272.

    Article  Google Scholar 

  23. Carrica P. M., Mofidi A., Eloot K. et al. Direct simulation and experimental study of zigzag maneuver of KCS in shallow water [J]. Ocean Engineering, 2016, 112: 117–133.

    Article  Google Scholar 

  24. Shen Z., Ye H., Wan D. URANS simulations of ship motion responses in long-crest irregular waves [J]. Journal of Hydrodynamics, 2014, 26(3): 436–446.

    Article  Google Scholar 

  25. Shen Z., Wan D. RANS computations of added resistance and motions of a ship in head waves [J]. International Journal of Offshore and Polar Engineering, 2013, 23(4): 263–271.

    Google Scholar 

  26. Shen Z., Wan D., Carrica P. M. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering [J]. Ocean Engineering, 2015, 108: 287–306.

    Article  Google Scholar 

  27. Noack R., Boger D., Kunz R. F. et al. Suggar++: An improved general overset grid assembly capability [C]. 19th AIAA Computational Fluid Dynamics. San Antonio, Texas, USA, 2009.

  28. Wang J., Zou L., Wan D. Numerical simulations of zigzag maneuver of free running ship in waves by RANS-Overset grid method [J]. Ocean Engineering, 2018, 162: 55–79.

    Article  Google Scholar 

  29. Wang J., Wan D. Application progress of computational fluid dynamic techniques for complex viscous flows in ship and ocean engineering [J]. Journal of Marine Science and Application, 2020, 19(1): 1–16.

    Article  Google Scholar 

  30. Sezen S., Cosgun T., Yurtseven A. et al. Numerical investigation of marine propeller underwater radiated noise using acoustic analogy Part 1: The influence of grid resolution [J]. Ocean Engineering, 2021, 220: 108448.

    Article  Google Scholar 

  31. Wang Z., Li L., Cheng H. et al. Numerical investigation of unsteady cloud cavitating flow around the Clark-Y hydrofoil with adaptive mesh refinement using OpenFOAM [J]. Ocean Engineering, 2020, 206: 107349.

    Article  Google Scholar 

  32. Lidtke A. K., Lloyd T., Lafeber F. H. et al. Predicting cavitating propeller noise in off-design conditions using scale-resolving CFD simulations [J]. Ocean Engineering, 2022, 254: 111176.

    Article  Google Scholar 

  33. Ku G., Cho J., Cheong C. et al. Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach [J]. Ocean Engineering, 2021, 238: 109693.

    Article  Google Scholar 

  34. Sezen S., Atlar M. Marine propeller underwater radiated noise prediction with the FWH acoustic analogy Part 3: Assessment of full-scale propeller hydroacoustic performance versus sea trial data [J]. Ocean Engineering, 2022, 266: 112712.

    Article  Google Scholar 

  35. Scapin N., Costa P., Brandt L. A volume-of-fluid method for interface-resolved simulations of phase-changing two-fluid flows [J]. Journal of Computational Physics, 2020, 407: 109251.

    Article  MathSciNet  MATH  Google Scholar 

  36. Nahed J., Dgheim J. Estimation curvature in PLIC-VOF method for interface advection [J]. Heat and Mass Transfer, 2020, 56(3): 773–787.

    Article  Google Scholar 

  37. Li L. M., Hu D. Q., Liu Y. C. et al. Large eddy simulation of cavitating flows with dynamic adaptive mesh refinement using OpenFOAM [J]. Journal of Hydrodynamics, 2019, 32(2): 398–409.

    Article  Google Scholar 

  38. Najafi A., Nowruzi H. On hydrodynamic analysis of stepped planing crafts [J]. Journal of Ocean Engineering and Science, 2019, 4(3): 238–251.

    Article  Google Scholar 

  39. Choi Y. M., Kim Y. J., Bouscasse B. et al. Performance of different techniques of generation and absorption of free-surface waves in computational fluid dynamics [J]. Ocean Engineering, 2020, 214: 107575.

    Article  Google Scholar 

  40. Deng X., Inaba S., Xie B. et al. High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces [J]. Journal of Computational Physics, 2018, 371: 945–966.

    Article  MathSciNet  MATH  Google Scholar 

  41. Roenby J., Bredmose H., Jasak H. A computational method for sharp interface advection [J]. Royal Society Open Science, 2016, 3(11): 160405.

    Article  MathSciNet  Google Scholar 

  42. Scheufler H., Roenby J. Accurate and efficient surface reconstruction from volume fraction data on general meshes [J]. Journal of Computational Physics, 2019, 383: 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  43. Gamet L., Scala M., Roenby J. et al. Validation of volume-of-fluid OpenFOAM® isoAdvector solvers using single bubble benchmarks [J]. Computers and Fluids, 2020, 213: 104722.

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen S., Zhao W., Wan D. Turbulent structures and characteristics of flows past a vertical surface-piercing finite circular cylinder [J]. Physics of Fluids, 2022, 34(1): 015115.

    Article  Google Scholar 

  45. Ianniello S., Muscari R., Di Mascio A. Ship underwater noise assessment by the acoustic analogy Part II: hydroacoustic analysis of a ship scaled model [J]. Journal of Marine Science and Technology, 2014, 19(1): 52–74.

    Article  Google Scholar 

  46. Cianferra M., Armenio V. Scaling properties of the Ffowcs-Williams and Hawkings equation for complex acoustic source close to a free surface [J]. Journal of Fluid Mechanics, 2021, 927: A2.

    Article  MathSciNet  MATH  Google Scholar 

  47. Bosschers J. Propeller tip-vortex cavitation and its broadband noise [D]. Doctoral Thesis, Enschede, The Netherlands: University of Twente, 2018.

    Book  Google Scholar 

  48. Bosschers J. A semi-empirical prediction method for broadband hull-pressure fluctuations and underwater radiated noise by propeller tip vortex cavitation [J]. Journal of Marine Science and Engineering, 2018, 6(2): 49.

    Article  Google Scholar 

  49. Yu L., Zhao W., Wan D. et al. Nonlinear noise of hydrofoil cavitation considering sound velocity variation and phase transitions [J]. Ocean Engineering, 2022, 264: 112506.

    Article  Google Scholar 

  50. Yu L. J., Wu J. W., Wan D. C. Correlation analysis between underwater noise and Liutex for DTMB4119 propeller [J]. Journal of Hydrodynamics, 2022, 34(4): 585–595.

    Article  Google Scholar 

  51. Kim S., Cheong C., Park W. G. Numerical investigation into effects of viscous flux vectors on hydrofoil cavitation flow and its radiated flow noise [J]. Applied Sciences, 2018, 8(2): 289.

    Article  Google Scholar 

  52. Dubbioso G., Muscari R., Ortolani F. et al. Numerical analysis of marine propellers low frequency noise during maneuvering [J]. Applied Ocean Research, 2021, 106: 102461.

    Article  Google Scholar 

  53. Yuan J., Chen Y., Wang L. et al. Dynamic analysis of cavitation tip vortex of pump-jet propeller based on DES [J]. Applied Sciences, 2020, 10(17): 5998.

    Article  Google Scholar 

  54. Lidtke A. K., Humphrey V. F., Turnock S. R. Feasibility study into a computational approach for marine propeller noise and cavitation modeling [J]. Ocean Engineering, 2016, 120: 152–159.

    Article  Google Scholar 

  55. Testa C., Ianniello S., Salvatore F. A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation [J]. Journal of Sound and Vibration, 2018, 413: 421–441.

    Article  Google Scholar 

  56. Zhao M., Wan D., Gao Y. Comparative study of different turbulence models for cavitational flows around NACA0012 hydrofoil [J]. Journal of Marine Science and Engineering, 2021, 9(7): 742.

    Article  Google Scholar 

  57. Yu A., Wang X., Zou Z. et al. Investigation of cavitation noise in cavitating flows around an NACA0015 hydrofoil [J]. Applied Sciences, 2019, 9(18): 3736.

    Article  Google Scholar 

  58. Ahn B. K., Jeong S. W., Park C. S. et al. An experimental investigation of coherent structures and induced noise characteristics of the partial cavitating flow on a two-dimensional hydrofoil [J]. Fluids, 2020, 5(4): 198.

    Article  Google Scholar 

  59. Li Z., Zhang X. S., Wan D. C. Research progress on the hydrodynamic performance of water-air-bubble mixed flows around a ship [J]. Journal of Hydrodynamics, 2022, 34(2): 171–188.

    Article  Google Scholar 

  60. Wu D., Wang J., Wan D. Delayed detached eddy simulation method for breaking bow waves of a surface combatant model with different trim angle [J]. Ocean Engineering, 2021, 242: 110177.

    Article  Google Scholar 

  61. Petersen K. J., Brinkerhoff J. R. On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: A review [J]. Physics of Fluids, 2021, 33(4): 041302.

    Article  Google Scholar 

  62. Huang C., Zhang G., Wan D. Hydroelastic responses of an elastic cylinder impacting on the free surface by MPS-FEM coupled method [J]. Acta Mechanica Sinica, 2022, 38(11): 322057.

    Article  MathSciNet  Google Scholar 

  63. Xie F., Meng Q., Wan D. Numerical simulations of liquidsolid flows in a vertical pipe by MPS-DEM coupling method [J]. China Ocean Engineering, 2022, 36(4): 542–552.

    Article  Google Scholar 

  64. You X., Li W., Chai Y. A truly meshfree method for solving acoustic problems using local weak form and radial basis functions [J]. Applied Mathematics and Computation, 2020, 365: 124694.

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang X., Zhao W., Wan D. A hybrid volume-of-fluid/Euler-Lagrange method for vertical plunging jet flows [J]. International Journal of Offshore and Polar Engineering, 2022, 32(1): 31–38.

    Article  Google Scholar 

  66. Zhang X., Wang J., Wan D. An improved multi-scale two phase method for bubbly flows [J]. International Journal of Multiphase Flow, 2020, 133: 103460.

    Article  MathSciNet  Google Scholar 

  67. Hu Y. D., Wu J. W., Wan D. C. et al. Preliminary control of the air entrainment in bow wave based on the Liutex force method [J]. Journal of Hydrodynamics, 2022, 34(3): 483–490.

    Article  Google Scholar 

  68. Zhang Y. N., Qiu X., Chen F. P. et al. A selected review of vortex identification methods with applications [J]. Journal of Hydrodynamics, 2018, 30(5): 767–779.

    Article  Google Scholar 

  69. Gao Y., Liu C. Rortex based velocity gradient tensor decomposition [J]. Physics of Fluids, 2019, 31(1): 011704.

    Article  Google Scholar 

  70. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  71. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  72. Chen S., Zhao W., Wan D. Turbulent structures and characteristics of flows past a vertical surface-piercing finite circular cylinder [J]. Physics of Fluids, 2022, 34(1): 015115.

    Article  Google Scholar 

  73. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  74. Zhao W. W., Wang J. H., Wan D. C. Vortex identification methods in marine hydrodynamics [J]. Journal of Hydrodynamics, 2020, 32(2): 286–295.

    Article  Google Scholar 

  75. Liu J., Liu C. Modified normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(6): 061704.

    Article  Google Scholar 

  76. Yu L. J., Zhao W. W., Wan D. C. Research progress and application of computational method for hydrodynamic noise from air-water interface [J]. Chinese Journal of Ship Research, 2022, 17(5): 85–102.

    Google Scholar 

  77. Wang W., Li Z., Liu M. et al. Influence of water injection on broadband noise and hydrodynamic performance for a NACA66 (MOD) hydrofoil under cloud cavitation condition [J]. Applied Ocean Research, 2021, 115: 102858.

    Article  Google Scholar 

  78. Sun T., Wang Z., Zou L. et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil [J]. Ocean Engineering, 2020, 197: 106831.

    Article  Google Scholar 

  79. Lee C. S., Ahn B. K., Han J. M. et al. Propeller tip vortex cavitation control and induced noise suppression by water injection [J]. Journal of Marine Science and Technology, 2018, 23(3): 453–463.

    Article  Google Scholar 

  80. Aktas B., Yilmaz N., Atlar M. et al. Suppression of tip vortex cavitation noise of propellers using PressurePoresTM technology [J]. Journal of Marine Science and Engineering, 2020, 8(3): 158.

    Article  Google Scholar 

  81. Asnaghi A., Svennberg U., Bensow R. E. Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers [J]. Applied Ocean Research, 2018, 79: 197–214.

    Article  Google Scholar 

  82. Liu C., Yan Q., Wood H. G. Numerical investigation of passive cavitation control using a slot on a three-dimensional hydrofoil [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30(7): 3585–3605.

    Article  Google Scholar 

  83. Dang Z., Mao Z., Tian W. Reduction of hydrodynamic noise of 3D hydrofoil with spanwise microgrooved surfaces inspired by sharkskin [J]. Journal of Marine Science and Engineering, 2019, 7(5): 136.

    Article  Google Scholar 

  84. Huang Z., Han Y., Tan L. et al. Influence of T-shape tip clearance on energy performance and broadband noise for a NACA0009 hydrofoil [J]. Energies, 2019, 12(21): 4066.

    Article  Google Scholar 

  85. Huang Z., Huang Z., Fan H. Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance [J]. Renewable Energy, 2020, 159: 726–735.

    Article  Google Scholar 

  86. Arce León C., Ragni D., Pröbsting S. et al. Flow topology and acoustic emissions of trailing edge serrations at incidence [J]. Experiments in Fluids, 2016, 57(5): 91.

    Article  Google Scholar 

  87. Sezen S., Uzun D., Ozyurt R., et al. Effect of biofouling roughness on a marine propeller’s performance including cavitation and underwater radiated noise (URN) [J]. Applied Ocean Research, 2021, 107: 102491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-cheng Wan.

Ethics declarations

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Project supported by the National Natural Science Foundation of China (Grant Nos. 51909160, 52131102), the National Key Research and Development Program of China (2022YFC2806705, 2019YFB1704200).

Biography: Wei-wen Zhao (1990-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Ww., Pan, Z., Yu, Lj. et al. An overview of flow field computational methods for hydrodynamic noise prediction. J Hydrodyn 34, 994–1005 (2022). https://doi.org/10.1007/s42241-023-0087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-023-0087-y

Key words

Navigation