Skip to main content
Log in

Preliminary control of the air entrainment in bow wave based on the Liutex force method

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Trails induced by air entrainment of bow wave breaking can be observed clearly around an advancing ship, making it prong to be detected and causing reduction in hydrodynamic performance. In breaking bow wave region, different scale of coherent vortex structures related closely to the air entrainment are generated. The formation and evolution of bubble clouds can be accounted partly by the swirling vortex flow of the jet plunging. In this work, high-fidelity simulation of the bow wave breaking around a rectangular thin plate is performed with the in-house code BAMR-SJTU. A Liutex force model is constructed to investigate the interaction between the free surface and vortices, and to explore the possibility of alleviating or controlling the air entrainment. This study is the first attempt to manipulate vortices corresponding to the air entrainment of the bow wave breaking. Some typical vortex structures based on the Liutex vortex identification method and the distribution of the vortex force are presented. Comparison of the vortex structures and the entrapped bubbles is conducted to illustrate the efficiency of Liutex force model in air entrainment control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waniewski T. A., Brennen C. E., Raichlen F. Experimental simulation of a bow wave [C]. ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada, 1997.

  2. Waniewski T. A., Brennen C. E., Raichlen F. Measurements of air entrainment by bow waves [J]. Journal of Fluids Engineering, 2001, 123(1): 57–63.

    Article  Google Scholar 

  3. Waniewski T. A., Brennen C. E., Raichlen F. Bow wave dynamics [J]. Journal of Ship Research, 2002, 46(1): 1–15.

    Article  Google Scholar 

  4. Dong R. R., Katz J., Huang T. T. On the structure of bow waves on a ship model [J]. Journal of Fluid Mechanics, 1997, 346: 77–115.

    Article  MathSciNet  Google Scholar 

  5. Roth G. I., Mascenik D. T., Katz J. Measurements of the flow structure and turbulence within a ship bow wave [J]. Physics of Fluids, 1999, 11(11): 3512–3523.

    Article  Google Scholar 

  6. Olivieri A., Pistani F., Wilson R. et al. Scars and vortices induced by ship bow and shoulder wave breaking [J]. Journal of Fluids Engineering, 2007, 129(11): 1445–1459.

    Article  Google Scholar 

  7. Takahashi M., Inoue A., Aritomi M. et al. Gas entrainment at free surface of liquid, (II) Onset conditions of vortex-induced entrainment [J]. Journal of Nuclear Science and Technology, 1988, 25(3): 245–253.

    Article  Google Scholar 

  8. Sarpkaya T., Suthon P. Interaction of a vortex couple with a free surface [J]. Experiments in Fluids, 1991, 11(4): 205–217.

    Article  Google Scholar 

  9. Ezure T., Kimura N., Hayashi K. et al. Transient behavior of gas entrainment caused by surface vortex [J]. Heat Transfer Engineering, 2008, 29(8): 659–666.

    Article  Google Scholar 

  10. Jeong J. T. Free-surface deformation due to spiral flow owing to a source/sink and a vortex in Stokes flow [J]. Theoretical and Computational Fluid Dynamics, 2012, 26(1): 93–103.

    Article  Google Scholar 

  11. André M. A., Bardet P. M. Free surface over a horizontal shear layer: Vorticity generation and air entrainment mechanisms [J]. Journal of Fluid Mechanics, 2017, 813: 1007–1044.

    Article  MathSciNet  Google Scholar 

  12. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  13. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program. Center for Turbulence Research, 1988, 193–208.

  14. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  Google Scholar 

  15. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three-dimensional flow fields [J]. Physics of Fluids, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  16. Zhou J., Adrian R., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 252–296.

    Article  MathSciNet  Google Scholar 

  17. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  18. Liu C., Wang Y. Q. Liutex and third generation of vortex definition and identification [M]. Cham, Switzerland: Springer International Publishing, 2021.

    Book  Google Scholar 

  19. Liu J., Gao Y., Liu C. An objective version of the Rortex vector for vortex identification [J]. Physics of Fluids, 2019, 31(6): 065112.

    Article  Google Scholar 

  20. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  21. Gao Y. S., Liu J. M., Yu Y. et al. A Liutex based definition of vortex rotation axis line [J]. Journal of Hydrodynamics, 2019, 31(3): 445–454.

    Article  Google Scholar 

  22. Yu H. D., Wang Y. Q. Liutex-based vortex dynamics: A preliminary study [J]. Journal of Hydrodynamics, 2020, 32(6): 1217–1220.

    Article  Google Scholar 

  23. Wang Y. Q., Yu H. D., Zhao W. W. et al. Liutex-based vortex control with implications for cavitation suppression [J] Journal of Hydrodynamics, 2021, 33(1): 74–85.

    Article  Google Scholar 

  24. Zhao W. W., Wang Y. Q., Wan D. C. Parametric study of Liutex-based force field models [J]. Journal of Hydrodynamics, 2021, 33(1): 86–92.

    Article  Google Scholar 

  25. Xu W., Gao Y., Deng Y. et al. An explicit expression for the calculation of the Rortex vector [J]. Physics of Fluids, 2019, 31(9): 095102.

    Article  Google Scholar 

  26. Liu C., Hu C. Block-based adaptive mesh refinement for fluid structure interactions in incompressible flows [J]. Computer Physics Communications, 2018, 232: 104–123.

    Article  MathSciNet  Google Scholar 

  27. Sussman M., Puckett E. G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows [J]. Journal of Computational Physics, 2000, 162(2): 301–337.

    Article  MathSciNet  Google Scholar 

  28. Liu C., Hu C. An efficient immersed boundary treatment for complex moving object [J]. Journal of Computational Physics, 2014, 274: 654–680.

    Article  Google Scholar 

  29. Hu Y. D., Liu C., Wan D. C. Numerical simulation of bow waves generated by a rectangular plate [C]. Proceeding the Thirtieth (2020) International Ocean and Polar Engineering Conference, Shanghai, China, 2020, 3515–3520.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-cheng Wan.

Additional information

Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB1704200), the National Natural Science Foundation of China (Grant Nos. 51879159, 52131102).

Biography: Yi-ding Hu (1998-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Yd., Wu, Jw., Wan, Dc. et al. Preliminary control of the air entrainment in bow wave based on the Liutex force method. J Hydrodyn 34, 483–490 (2022). https://doi.org/10.1007/s42241-022-0035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0035-2

Key words

Navigation