Skip to main content
Log in

Smoothed particle hydrodynamics and its applications in fluid-structure interactions

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In ocean engineering, the applications are usually related to a free surface which brings so many interesting physical phenomena (e.g. water waves, impacts, splashing jets, etc.). To model these complex free surface flows is a tough and challenging task for most computational fluid dynamics (CFD) solvers which work in the Eulerian framework. As a Lagrangian and meshless method, smoothed particle hydrodynamics (SPH) offers a convenient tracking for different complex boundaries and a straightforward satisfaction for different boundary conditions. Therefore SPH is robust in modeling complex hydrodynamic problems characterized by free surface boundaries, multiphase interfaces or material discontinuities. Along with the rapid development of the SPH theory, related numerical techniques and high-performance computing technologies, SPH has not only attracted much attention in the academic community, but also gradually gained wide applications in industrial circles. This paper is dedicated to a review of the recent developments of SPH method and its typical applications in fluid-structure interactions in ocean engineering. Different numerical techniques for improving numerical accuracy, satisfying different boundary conditions, improving computational efficiency, suppressing pressure fluctuations and preventing the tensile instability, etc., are introduced. In the numerical results, various typical fluid-structure interaction problems or multiphase problems in ocean engineering are described, modeled and validated. The prospective developments of SPH in ocean engineering are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics-theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375–389.

    Article  MATH  Google Scholar 

  2. Monaghan J., Gingold R. Shock simulation by the particle method SPH [J]. Journal of Computational Physics, 1983, 52(2): 374–389.

    Article  MATH  Google Scholar 

  3. Monaghan J. J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574.

    Article  Google Scholar 

  4. Monaghan J. J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399–406.

    Article  MATH  Google Scholar 

  5. Violeau D., Rogers B. D. Smoothed particle hydrodynamics (SPH) for free-surface flows: Past, present and future [J]. Journal of Hydraulic Research, 2016, 54(1): 1–26.

    Article  Google Scholar 

  6. Shadloo M., Oger G., Le Touzé D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges [J]. Computers and fluids, 2016, 136: 11–34.

    Article  MathSciNet  Google Scholar 

  7. Liu M. B., Li S. M. On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics [J]. Journal of Hydrodynamics, 2016, 28(5): 731–745.

    Article  Google Scholar 

  8. Gotoh H., Khayyer A. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering [J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 251–278.

    Article  Google Scholar 

  9. Tartakovsky A. M., Trask N., Pan K. et al. Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media [J]. Computational Geosciences, 2016, 20(4): 807–834.

    Article  MathSciNet  Google Scholar 

  10. Cao X., Ming F., Zhang A. Sloshing in a rectangular tank based on SPH simulation [J]. Applied Ocean Research, 2014, 47: 241–254.

    Article  Google Scholar 

  11. Cercos-Pita J. L. AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL [J]. Computer Physics Communications, 2015, 192: 295–312.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gong K., Liu H., Wang B. L. Water entry of a wedge based on SPH model with an improved boundary treatment [J]. Journal of Hydrodynamics, 2009, 21(6): 750–757.

    Article  Google Scholar 

  13. Marrone S., Colagrossi A., Antuono M. et al. An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers [J]. Journal of Computational Physics, 2013, 245: 456–475.

    Article  MathSciNet  MATH  Google Scholar 

  14. Marrone S., Colagrossi A., Antuono M. et al. A 2D+t SPH model to study the breaking wave pattern generated by fast ships [J]. Journal of Fluids and Structures, 2011, 27(8): 1199–1215.

    Article  Google Scholar 

  15. Sun P., Ming F., Zhang A. Numerical simulation of interactions between free surface and rigid body using a robust SPH method [J]. Ocean Engineering, 2015, 98: 32–49.

    Article  Google Scholar 

  16. Zhang A. M., Yang W. S., Yao X. L. Numerical simulation of underwater contact explosion [J]. Applied Ocean Research, 2012, 34: 10–20.

    Article  Google Scholar 

  17. Zhang A. M., Sun P. N., Ming F. R. An SPH modeling of bubble rising and coalescing in three dimensions [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 189–209.

    Article  MathSciNet  Google Scholar 

  18. Wang S., Khoo B. C., Liu G. et al. Coupling GSM/ALE with ES-FEM-T3 for fluid–deformable structure interactions [J]. Journal of Computational Physics, 2014, 276: 315–340.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang S., Khoo B., Liu G. et al. An arbitrary Lagrangian–Eulerian gradient smoothing method (GSM/ALE) for interaction of fluid and a moving rigid body [J]. Computers and fluids, 2013, 71: 327–347.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang Z. Q., Liu G., Khoo B. C. Immersed smoothed finite element method for two dimensional fluid–structure interaction problems [J]. International Journal for Numerical Methods in Engineering, 2012, 90(10): 1292–1320.

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang Z. Q., Liu G., Khoo B. C. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems [J]. Computational Mechanics, 2013, 51(2): 129–150.

    Article  MathSciNet  MATH  Google Scholar 

  22. Colagrossi A., Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2003, 191(2): 448–475.

    Article  MATH  Google Scholar 

  23. Khayyer A., Gotoh H. Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios [J]. Journal of Computational Physics, 2013, 242: 211–233.

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun P. N., Colagrossi A., Marrone S. et al. Detection of Lagrangian coherent structures in the SPH framework [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 849–868.

    Article  MathSciNet  Google Scholar 

  25. Colagrossi A., Rossi E., Marrone S. et al. Particle methods for viscous flows: Analogies and differences between the SPH and DVH methods [J]. Communications in Computational Physics, 2016, 20(3): 660–688.

    Article  MathSciNet  MATH  Google Scholar 

  26. Souto-Iglesias A., Macià F., González L. M. et al. On the consistency of MPS [J]. Computer Physics Communications, 2013, 184(3): 732–745.

    Article  MathSciNet  MATH  Google Scholar 

  27. Souto-Iglesias A., Macià F., González L. M. et al. Addendum to “On the consistency of MPS”[Comput. Phys. Comm. 184 (3)(2013) 732–745] [J]. Computer Physics Communications, 2014, 185(2): 595–598.

    Article  MathSciNet  Google Scholar 

  28. Shao S., Gotoh H. Turbulence particle models for tracking free surfaces [J]. Journal of Hydraulic Research, 2005, 43(3): 276–289.

    Article  Google Scholar 

  29. Zhang A. M., Cao X. Y., Ming F. R. et al. Investigation on a damaged ship model sinking into water based on three dimensional SPH method [J]. Applied Ocean Research, 2013, 42: 24–31.

    Article  Google Scholar 

  30. Marrone S., Bouscasse B., Colagrossi A. et al. Study of ship wave breaking patterns using 3D parallel SPH simulations [J]. Computers and fluids, 2012, 69: 54–66.

    Article  MathSciNet  MATH  Google Scholar 

  31. Oger G., Le Touzé D., Guibert D. et al. On distributed memory MPI-based parallelization of SPH codes in massive HPC context [J]. Computer Physics Communications, 2016, 200: 1–14.

    Article  MathSciNet  Google Scholar 

  32. Domínguez J. M., Crespo A. J., Valdez-Balderas D. et al. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters [J]. Computer Physics Communications, 2013, 184(8): 1848–1860.

    Article  Google Scholar 

  33. Longshaw S. M., Rogers B. D. Automotive fuel cell sloshing under temporally and spatially varying high acceleration using GPU-based smoothed particle hydrodynamics (SPH) [J]. Advances in Engineering Software, 2015, 83: 31–44.

    Article  Google Scholar 

  34. Valdez-Balderas D., Domínguez J. M., Rogers B. D. et al. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters [J]. Journal of Parallel and Distributed Computing, 2013, 73(11): 1483–1493.

    Article  Google Scholar 

  35. Antuono M., Colagrossi A., Marrone S. Numerical diffusive terms in weakly-compressible SPH schemes [J]. Computer Physics Communications, 2012, 183(12): 2570–2580.

    Article  MathSciNet  Google Scholar 

  36. Antuono M., Colagrossi A., Marrone S. et al. Free-surface flows solved by means of SPH schemes with numerical diffusive terms [J]. Computer Physics Communications, 2010, 181(3): 532–549.

    Article  MathSciNet  MATH  Google Scholar 

  37. Bouscasse B., Colagrossi A., Marrone S. et al. Nonlinear water wave interaction with floating bodies in SPH [J]. Journal of Fluids and Structures, 2013, 42: 112–129.

    Article  Google Scholar 

  38. Liu X., Lin P., Shao S. An ISPH simulation of coupled structure interaction with free surface flows [J]. Journal of Fluids and Structures, 2014, 48: 46–61.

    Article  Google Scholar 

  39. Gui Q., Dong P., Shao S. Numerical study of PPE source term errors in the incompressible SPH models [J]. International Journal for Numerical Methods in Fluids, 2015, 77(6): 358–379.

    Article  MathSciNet  Google Scholar 

  40. Gui Q., Shao S., Dong P. Wave impact simulations by an improved ISPH model [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 140(3): 0401–4005.

    Google Scholar 

  41. Shao S. Incompressible smoothed particle hydrodynamics simulation of multifluid flows [J]. International Journal for Numerical Methods in Fluids, 2012, 69(11): 1715–1735.

    Article  MathSciNet  MATH  Google Scholar 

  42. Daly E., Grimaldi S., Bui H. H. Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes [J]. Advances in Water Resources, 2016, 97: 156–167.

    Article  Google Scholar 

  43. Barcarolo D. A. Improvement of the precision and the efficiency of the SPH method: theoretical and numerical study [D]. Doctoral Thesis, Nantes, France: Ecole Centrale de Nantes, 2013.

    Google Scholar 

  44. Marrone S., Colagrossi A., Le Touzé D. et al. Fast free-surface detection and level-set function definition in SPH solvers [J]. Journal of Computational Physics, 2010, 229(10): 3652–3663.

    Article  MATH  Google Scholar 

  45. Xu R., Stansby P., Laurence D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach [J]. Journal of Computational Physics, 2009, 228(18): 6703–6725.

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu M., Liu G. Smoothed particle hydrodynamics (SPH): An overview and recent developments [J]. Archives of computational methods in engineering, 2010, 17(1): 25–76.

    Article  MathSciNet  MATH  Google Scholar 

  47. Antuono M., Bouscasse B., Colagrossi A. et al. A measure of spatial disorder in particle methods [J]. Computer Physics Communications, 2014, 185(10): 2609–2621.

    Article  Google Scholar 

  48. Yao J., Lin T., Liu G. R. et al. An adaptive GSM-CFD solver and its application to shock-wave boundary layer interaction [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25(6): 1282–1310.

    Article  MathSciNet  MATH  Google Scholar 

  49. Barcarolo D., Le Touzé D., Oger G. et al. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method [J]. Journal of Computational Physics, 2014, 273: 640–657.

    Article  MATH  Google Scholar 

  50. Sun P. N., Colagrossi A., Marrone S. et al. The δ plus-SPH model: Simple procedures for a further improvement of the SPH scheme [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25–49.

    Article  MathSciNet  Google Scholar 

  51. Chiron L., Oger G., Touze D. L. et al. Improvements on particle refinement method with SPH [C]. Proceeding of the 11th International SPHERIC Workshop. Munich, Germany, 2016.

    Google Scholar 

  52. Zhang Z., Wang L., Silberschmidt V. V. et al. SPH-FEM simulation of shaped-charge jet penetration into double hull: A comparison study for steel and SPS [J]. Composite Structures, 2016, 155: 135–144.

    Article  Google Scholar 

  53. Ming F. R., Zhang A. M., Xue Y. Z. et al. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions [J]. Ocean Engineering, 2016, 117: 359–382.

    Article  Google Scholar 

  54. Zhang A. M., Yang W. S., Huang C. et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination [J]. Computers and fluids, 2013, 71: 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  55. Liu M. B., Liu G. R., Lam K. Y. et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion [J]. Computational Mechanics, 2003, 30(2): 106–118.

    Article  MATH  Google Scholar 

  56. Liu M. B., Liu G. R., Zong Z. et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology [J]. Computers and fluids, 2003, 32(3): 305–322.

    Article  MATH  Google Scholar 

  57. Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particle method [M]. Singapore: World Scientific, 2003.

    Book  MATH  Google Scholar 

  58. Liu M. B., Liu G. R., Lam K. Y. Constructing smoothing functions in smoothed particle hydrodynamics with applications [J]. Journal of Computational and Applied Mathematics, 2003, 155(2): 263–284.

    Article  MathSciNet  MATH  Google Scholar 

  59. Liu M. B., Xie W. P., Liu G. R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical Modelling, 2005, 29(12): 1252–1270.

    Article  MATH  Google Scholar 

  60. Jiang T., Ouyang J., Ren J. L. et al. A mixed corrected symmetric SPH (MC-SSPH) method for computational dynamic problems [J]. Computer Physics Communications, 2012, 183(1): 50–62.

    Article  MathSciNet  MATH  Google Scholar 

  61. Ren J., Jiang T., Lu W. et al. An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows [J]. Computer Physics Communications, 2016, 205: 87–105.

    Article  MathSciNet  MATH  Google Scholar 

  62. Long T., Hu D., Yang G. et al. A particle-element contact algorithm incorporated into the coupling methods of FEM-ISPH and FEM-WCSPH for FSI problems [J]. Ocean Engineering, 2016, 123: 154–163.

    Article  Google Scholar 

  63. Serván-Camas B., Cercós-Pita J., Colom-Cobb J. et al. Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling [J]. Ocean Engineering, 2016, 123: 383–396.

    Article  Google Scholar 

  64. Hu D., Long T., Xiao Y. et al. Fluid–structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 276: 266–286.

    Article  MathSciNet  Google Scholar 

  65. Li Z., Leduc J., Nunez-Ramirez J. et al. A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluids-tructure interaction problems with large interface motion [J]. Computational Mechanics, 2015, 55(4): 697–718.

    Article  MathSciNet  MATH  Google Scholar 

  66. Ming F. R., Zhang A. M., Wang S. P. Smoothed particle hydrodynamics for the linear and nonlinear analyses of elastoplastic damage and fracture of shell [J]. International Journal of Applied Mechanics, 2015, 7(2): 1550032.

    Article  Google Scholar 

  67. Ming F. R., Zhang A. M., Cao X. Y. A robust shell element in meshfree SPH method [J]. Acta Mechanica Sinica, 2013, 29(2): 241–255.

    Article  MathSciNet  MATH  Google Scholar 

  68. Hwang S. C., Park J. C., Gotoh H. et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method [J]. Ocean Engineering, 2016, 118: 227–241.

    Article  Google Scholar 

  69. Hwang S. C., Khayyer A., Gotoh H. et al. Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems [J]. Journal of Fluids and Structures, 2014, 50: 497–511.

    Article  Google Scholar 

  70. Yang X., Liu M., Peng S. et al. Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method [J]. Coastal Engineering, 2016, 108: 56–64.

    Article  Google Scholar 

  71. Yang X., Liu M., Peng S. Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids [J]. Physical Review E, 2014, 90(6): 063011.

    Google Scholar 

  72. YANG X., LIU M. B. Bending modes and transition criteria for a flexible fiber in viscous flows [J]. Journal of Hydrodynamics, 2016, 28(6): 1043–1048.

    Article  Google Scholar 

  73. Marrone S., Colagrossi A., Di Mascio A. et al. Analysis of free-surface flows through energy considerations: Singlephase versus two-phase modeling [J]. Physical Review E, 2016, 93(5): 053113.

    Google Scholar 

  74. Thiagarajan K., Rakshit D., Repalle N. The air–water sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels [J]. Ocean Engineering, 2011, 38(2): 498–508.

    Article  Google Scholar 

  75. Gong K., Shao S., Liu H. et al. Two-phase SPH simulation of fluid–structure interactions [J]. Journal of Fluids and Structures, 2016, 65: 155–179.

    Article  Google Scholar 

  76. Lugni C., Brocchini M., Faltinsen O. Evolution of the air cavity during a depressurized wave impact. II. The dynamic field [J]. Physics of Fluids, 2010, 22(5): 056102.

    Google Scholar 

  77. Lugni C., Miozzi M., Brocchini M. et al. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field [J]. Physics of Fluids, 2010, 22(5): 056101.

    Google Scholar 

  78. Chen Z., Zong Z., Liu M. B. et al. An SPH model for multiphase flows with complex interfaces and large density differences [J]. Journal of Computational Physics, 2015, 283: 169–188.

    Article  MathSciNet  MATH  Google Scholar 

  79. Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28(3): 335–358.

    Article  Google Scholar 

  80. Sedlar M., Ji B., Kratky T. et al. Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil [J]. Ocean Engineering, 2016, 123: 357–382.

    Article  Google Scholar 

  81. Grenier N., Le Touze D., Colagrossi A. et al. Viscous bubbly flows simulation with an interface SPH model [J]. Ocean Engineering, 2013, 69: 88–102.

    Article  Google Scholar 

  82. Sun P. N., Li Y. B., Ming F. R. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method [J]. Acta Physica Sinica, 2015, 64(17): 174701–174701.

    Google Scholar 

  83. Hu X., Adams N. A multi-phase SPH method for macroscopic and mesoscopic flows [J]. Journal of Computational Physics, 2006, 213(2): 844–861.

    Article  MathSciNet  MATH  Google Scholar 

  84. Grenier N., Antuono M., Colagrossi A. et al. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows [J]. Journal of Computational Physics, 2009, 228(22): 8380–8393.

    Article  MathSciNet  MATH  Google Scholar 

  85. Ming F. R., Sun P. N., Zhang A. M. Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model [J]. Meccanica, 2017, 1–20.

    Google Scholar 

  86. Adami S., Hu X., Adams N. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation [J]. Journal of Computational Physics, 2010, 229(13): 5011–5021.

    Article  MATH  Google Scholar 

  87. Colagrossi A., Antuono M., Le Touzé D. Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model [J]. Physical Review E, 2009, 79(5): 056701.

    Google Scholar 

  88. Dehnen W., Aly H. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability [J]. Monthly Notices of the Royal Astronomical Society, 2012, 425(2): 1068–1082.

    Article  Google Scholar 

  89. Randles P., Libersky L. Smoothed particle hydrodynamics: Some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 375–408.

    Article  MathSciNet  MATH  Google Scholar 

  90. Shao J. R., Li H. Q., Liu G. R. et al. An improved SPH method for modeling liquid sloshing dynamics [J]. Computers and Structures, 2012, 100: 18–26.

    Article  Google Scholar 

  91. Huang C., Lei J. M., Liu M. B. et al. A kernel gradient free (KGF) SPH method [J]. International Journal for Numerical Methods in Fluids, 2015, 78(11): 691–707.

    Article  MathSciNet  Google Scholar 

  92. Marrone S., Antuono M., Colagrossi A. et al. δ-SPH model for simulating violent impact flows [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13): 1526–1542.

    Article  MathSciNet  MATH  Google Scholar 

  93. Ren B., He M., Dong P. et al. Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method [J]. Applied Ocean Research, 2015, 50: 1–12.

    Article  Google Scholar 

  94. Zhang G., Batra R. Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems [J]. Computational Mechanics, 2009, 43(3): 321–340.

    Article  MathSciNet  MATH  Google Scholar 

  95. Xu X. An improved SPH approach for simulating 3D dam-break flows with breaking waves [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 331: 723–742.

    Article  MathSciNet  Google Scholar 

  96. Xu X., Deng X. L. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids [J]. Computer Physics Communications, 2016, 201: 43–62.

    Article  MathSciNet  MATH  Google Scholar 

  97. Benz W. Smoothed particle hydrodynamics: A review [J]. The Numerical Modelling of Nonlinear Stellar Pulsations, 1989, 302: 269–288.

    Google Scholar 

  98. Adams B. Simulation of ballistic impacts on armored civil vehicles [D]. Doctoral Thesis, Eindhoven, The Netherlands: Eindhoven University of Technology, 2003.

    Google Scholar 

  99. Ming F. R., Sun P. N., Zhang A. M. Investigation on charge parameters of underwater contact explosion based on axisymmetric SPH method [J]. Applied Mathematics and Mechanics, 2014, 35: 453–468.

    Article  MathSciNet  Google Scholar 

  100. Shibata K., Koshizuka S., Sakai M. et al. Lagrangian simulations of ship-wave interactions in rough seas [J]. Ocean Engineering, 2012, 42: 13–25.

    Article  Google Scholar 

  101. Guo K., Sun P. N., Cao X. Y. et al. A 3-D SPH model for simulating water flooding of a damaged floating structure [J]. Journal of Hydrodynamics, 2017 (in Press).

    Google Scholar 

  102. Kajtar J., Monaghan J. J. SPH simulations of swimming linked bodies [J]. Journal of Computational Physics, 2008, 227(19): 8568–8587.

    Article  MathSciNet  MATH  Google Scholar 

  103. Shao S., Gotoh H. Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model [J]. Coastal Engineering Journal, 2004, 46(2): 171–202.

    Article  Google Scholar 

  104. Cercos-Pita J., Dalrymple R., Herault A. Diffusive terms for the conservation of mass equation in SPH [J]. Applied Mathematical Modelling, 2016, 40(19-20): 8722–8736.

    Article  MathSciNet  Google Scholar 

  105. Molteni D., Colagrossi A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH [J]. Computer Physics Communications, 2009, 180(6): 861–872.

    Article  MathSciNet  MATH  Google Scholar 

  106. Vila J. On particle weighted methods and smooth particle hydrodynamics [J]. Mathematical models and methods in applied sciences, 1999, 9(02): 161–209.

    Article  MathSciNet  MATH  Google Scholar 

  107. Lanson N., Vila J. P. Renormalized meshfree schemes I: Consistency, stability, and hybrid methods for conservation laws [J]. SIAM Journal on Numerical Analysis, 2008, 46(4): 1912–1934.

    Article  MathSciNet  MATH  Google Scholar 

  108. Ferrari A., Dumbser M., Toro E. F. et al. A new 3D parallel SPH scheme for free surface flows [J]. Computers and fluids, 2009, 38(6): 1203–1217.

    Article  MathSciNet  MATH  Google Scholar 

  109. Khayyer A., Gotoh H. Enhancement of stability and accuracy of the moving particle semi-implicit method [J]. Journal of Computational Physics, 2011, 230(8): 3093–3118.

    Article  MathSciNet  MATH  Google Scholar 

  110. Khayyer A., Gotoh H. A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method [J]. Applied Ocean Research, 2010, 32(1): 124–131.

    Article  Google Scholar 

  111. Colagrossi A., Antuono M., Souto-Iglesias A. et al. Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows [J]. Physical Review E, 2011, 84(2): 026705.

    Google Scholar 

  112. Dilts G. A. Moving least-squares particle hydrodynamics II: Conservation and boundaries [J]. International Journal for Numerical Methods in Engineering, 2000, 48(10): 1503–1524.

    Article  MathSciNet  MATH  Google Scholar 

  113. Haque A., Dilts G. A. Three-dimensional boundary detection for particle methods [J]. Journal of Computational Physics, 2007, 226(2): 1710–1730.

    Article  MathSciNet  MATH  Google Scholar 

  114. Zheng X., Duan W. Y., Ma Q. W. A new scheme for identifying free surface particles in improved SPH [J]. Science China Physics, Mechanics and Astronomy, 2012, 55(8): 1454–1463.

    Article  Google Scholar 

  115. Tang Z. Y., Zhang Y. L., Wan D. C. Numerical simulation of 3-D free surface flows by overlapping MPS [J]. Journal of Hydrodynamics, 2016, 28(2): 306–312.

    Article  Google Scholar 

  116. De Leffe M., Le Touzé D., Alessandrini B. Normal flux method at the boundary for SPH [C]. 4th ERCOFTAC SPHERIC Workshop. Nantes, France, 2009.

    Google Scholar 

  117. Ferrand M., Laurence D., Rogers B. et al. Unified semianalytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method [J]. International Journal for Numerical Methods in Fluids, 2013, 71(4): 446–472.

    Article  MathSciNet  Google Scholar 

  118. Monaghan J., Kajtar J. SPH particle boundary forces for arbitrary boundaries [J]. Computer Physics Communications, 2009, 180(10): 1811–1820.

    Article  MathSciNet  MATH  Google Scholar 

  119. Cummins S. J., Rudman M. An SPH projection method [J]. Journal of Computational Physics, 1999, 152(2): 584–607.

    Article  MathSciNet  MATH  Google Scholar 

  120. Adami S., Hu X., Adams N. A generalized wall boundary condition for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2012, 231(21): 7057–7075.

    Article  MathSciNet  Google Scholar 

  121. Liu M. B., Shao J. R., Chang J. Z. On the treatment of solid boundary in smoothed particle hydrodynamics [J]. Science China-Technological Sciences, 2012, 55(1): 244–254.

    Article  Google Scholar 

  122. Liu M. B., Shao J. R., Li H. Q. An SPH model for free surface flows with moving rigid objects [J]. International Journal for Numerical Methods in Fluids, 2014, 74: 684–697.

    Article  MathSciNet  Google Scholar 

  123. Cercos-Pita J., Antuono M., Colagrossi A. et al. SPH energy conservation for fluid–solid interactions [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 771–791.

    Article  MathSciNet  Google Scholar 

  124. Maciá F., Antuono M., González L. M. et al. Theoretical analysis of the no-slip boundary condition enforcement in SPH methods [J]. Progress of theoretical physics, 2011, 125(6): 1091–1121.

    Article  MATH  Google Scholar 

  125. Shao S., Lo E. Y. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26(7): 787–800.

    Article  Google Scholar 

  126. Takeda H., Miyama S. M., Sekiya M. Numerical simulation of viscous flow by smoothed particle hydrodynamics [J]. Progress of theoretical physics, 1994, 92(5): 939–960.

    Article  Google Scholar 

  127. Federico I., Marrone S., Colagrossi A. et al. Simulating 2D open-channel flows through an SPH model [J]. European Journal of Mechanics-B/Fluids, 2012, 34: 35–46.

    Article  MathSciNet  MATH  Google Scholar 

  128. Kazemi E., Nichols A., Tait S. et al. SPH modelling of depth-limited turbulent open channel flows over rough boundaries [J]. International Journal for Numerical Methods in Fluids, 2017, 83(1): 3–27.

    Article  MathSciNet  Google Scholar 

  129. Ferrand M., Joly A., Kassiotis C. et al. Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D [J]. Computer Physics Communications, 2016, 210: 29–44.

    Article  MathSciNet  MATH  Google Scholar 

  130. Leroy A., Violeau D., Ferrand M. et al. A new open boundary formulation for incompressible SPH [J]. Computers and Mathematics with Applications, 2016, 72(9): 2417–2432.

    Article  MathSciNet  MATH  Google Scholar 

  131. Kunz P., Hirschler M., Huber M. et al. Inflow/outflow with dirichlet boundary conditions for pressure in ISPH [J]. Journal of Computational Physics, 2016, 326: 171–187.

    Article  MathSciNet  Google Scholar 

  132. Tan S. K., Cheng N. S., Xie Y. et al. Incompressible SPH simulation of open channel flow over smooth bed [J]. Journal of Hydro-environment Research, 2015, 9(3): 340–353.

    Article  Google Scholar 

  133. Lastiwka M., Basa M., Quinlan N. J. Permeable and non-reflecting boundary conditions in SPH [J]. International Journal for Numerical Methods in Fluids, 2009, 61(7): 709–724.

    Article  MathSciNet  MATH  Google Scholar 

  134. Wen H., Ren B. 3D Numerical wave basin based on parallelized SPH method [C]. ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, USA, 2014.

    Book  Google Scholar 

  135. Colagrossi A., Bouscasse B., Antuono M. et al. Particle packing algorithm for SPH schemes [J]. Computer Physics Communications, 2012, 183(8): 1641–1653.

    Article  MathSciNet  MATH  Google Scholar 

  136. Antuono M., Colagrossi A., Marrone S. et al. Propagation of gravity waves through an SPH scheme with numerical diffusive terms [J]. Computer Physics Communications, 2011, 182(4): 866–877.

    Article  MATH  Google Scholar 

  137. Rossi E., Colagrossi A., Durante D. et al. Simulating 2D viscous flow around geometries with vertices through the diffused vortex hydrodynamics method [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 302: 147–169.

    Article  MathSciNet  Google Scholar 

  138. Marsh A., Oger G., Touzé D. I. et al. Validation of a conservative variable-resolution SPH scheme including ∇h terms [C]. Proceedings of the 6th International SPHERIC Workshop. Hambourg, Germany, 2011.

    Google Scholar 

  139. Koukouvinis P. K., Anagnostopoulos J. S., Papantonis D. E. Simulation of 2D wedge impacts on water using the SPH–ALE method [J]. Acta Mechanica, 2013, 224(11): 2559–2575.

    Article  MATH  Google Scholar 

  140. Tang Z., Wan D., Chen G. et al. Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method [J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 355–364.

    Article  Google Scholar 

  141. Feldman J., Bonet J. Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems [J]. International Journal for Numerical Methods in Engineering, 2007, 72(3): 295–324.

    Article  MathSciNet  MATH  Google Scholar 

  142. Omidvar P., Stansby P. K., Rogers B. D. Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass [J]. International Journal for Numerical Methods in Fluids, 2012, 68(6): 686–705.

    Article  MathSciNet  MATH  Google Scholar 

  143. Omidvar P., Stansby P. K., Rogers B. D. SPH for 3D floating bodies using variable mass particle distribution [J]. International Journal for Numerical Methods in Fluids, 2013, 72(4): 427–452.

    Article  MathSciNet  Google Scholar 

  144. López Y. R., Roose D., Morfa C. R. Dynamic particle refinement in SPH: Application to free surface flow and non-cohesive soil simulations [J]. Computational Mechanics, 2013, 51(5): 731–741.

    Article  MathSciNet  MATH  Google Scholar 

  145. Vacondio R., Rogers B., Stansby P. et al. Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 442–460.

    Article  MathSciNet  Google Scholar 

  146. Vacondio R., Rogers B., Stansby P. et al. Variable resolution for SPH: A dynamic particle coalescing and splitting scheme [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 256: 132–148.

    Article  MathSciNet  MATH  Google Scholar 

  147. Monaghan J. J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290–311.

    Article  MATH  Google Scholar 

  148. Le Touzé D., Colagrossi A., Colicchio G. et al. A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces [J]. International Journal for Numerical Methods in Fluids, 2013, 73(7): 660–691.

    MathSciNet  Google Scholar 

  149. Oger G., Marrone S., Le Touzé D. et al. SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms [J]. Journal of Computational Physics, 2016, 313: 76–98.

    Article  MathSciNet  MATH  Google Scholar 

  150. Tsuruta N., Khayyer A., Gotoh H. A short note on dynamic stabilization of moving particle semi-implicit method [J]. Computers and fluids, 2013, 82: 158–164.

    Article  MathSciNet  MATH  Google Scholar 

  151. Adami S., Hu X., Adams N. A transport-velocity formulation for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2013, 241: 292–307.

    Article  MathSciNet  MATH  Google Scholar 

  152. Litvinov S., Hu X., Adams N. Towards consistence and convergence of conservative SPH approximations [J]. Journal of Computational Physics, 2015, 301: 394–401.

    Article  MathSciNet  MATH  Google Scholar 

  153. Lind S. J., Xu R., Stansby P. K. et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves [J]. Journal of Computational Physics, 2012, 231(4): 1499–1523.

    Article  MathSciNet  MATH  Google Scholar 

  154. Liu X., Lin P., Shao S. ISPH wave simulation by using an internal wave maker [J]. Coastal Engineering, 2015, 95: 160–170.

    Article  Google Scholar 

  155. Bouscasse B., Antuono M., Colagrossi A. et al. Numerical and experimental investigation of nonlinear shallow water sloshing [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14(2): 123–138.

    Article  Google Scholar 

  156. Delorme L., Colagrossi A., Souto-Iglesias A. et al. A set of canonical problems in sloshing, Part I: Pressure field inforced roll comparison between experimental results and SPH [J]. Ocean Engineering, 2009, 36(2): 168–178.

    Article  Google Scholar 

  157. Marrone S., Colagrossi A., Di Mascio A. et al. Prediction of energy losses in water impacts using incompressible and weakly compressible models [J]. Journal of Fluids and Structures, 2015, 54: 802–822.

    Article  Google Scholar 

  158. Chen Z., Zong Z., Li H. et al. An investigation into the pressure on solid walls in 2D sloshing using SPH method [J]. Ocean Engineering, 2013, 59: 129–141.

    Article  Google Scholar 

  159. Luo M., Koh C., Bai W. A three-dimensional particle method for violent sloshing under regular and irregular excitations [J]. Ocean Engineering, 2016, 120: 52–63.

    Article  Google Scholar 

  160. Wei Z., Hu C. Experimental study on water entry of circular cylinders with inclined angles [J]. Journal of Marine Science and Technology, 2015, 20(4): 722–738.

    Article  Google Scholar 

  161. Wei Z., Hu C. An experimental study on water entry of horizontal cylinders [J]. Journal of Marine Science and Technology, 2014, 19(3): 338–350.

    Article  MathSciNet  Google Scholar 

  162. Nguyen V. T., Vu D. T., Park W. G. et al. Navier-Stokes solver for water entry bodies with moving Chimera grid method in 6DOF motions [J]. Computers and fluids, 2016, 140: 19–38.

    Article  MathSciNet  Google Scholar 

  163. Zhu X., Faltinsen O. M., Hu C. Water entry and exit of a horizontal circular cylinder [J]. Journal of Offshore Mechanics and Arctic Engineering, 2007, 129(4): 253–264.

    Article  Google Scholar 

  164. Zhao R., Faltinsen O. Water entry of two-dimensional bodies [J]. Journal of Fluid Mechanics, 1993, 246(1): 593–612.

    Article  MATH  Google Scholar 

  165. Wu G., Sun H., He Y. Numerical simulation and experimental study of water entry of a wedge in free fall motion [J]. Journal of Fluids and Structures, 2004, 19(3): 277–289.

    Article  Google Scholar 

  166. Sun S., Wu G. Oblique water entry of a cone by a fully three-dimensional nonlinear method [J]. Journal of Fluids and Structures, 2013, 42: 313–332.

    Article  Google Scholar 

  167. Sun H., Faltinsen O. M. Water impact of horizontal circular cylinders and cylindrical shells [J]. Applied Ocean Research, 2006, 28(5): 299–311.

    Article  Google Scholar 

  168. Vandamme J., Zou Q., Reeve D. E. Modeling floating object entry and exit using smoothed particle hydrodynamics [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 137(5): 213–224.

    Article  Google Scholar 

  169. Colicchio G., Greco M., Miozzi M. et al. Experimental and numerical investigation of the water-entry and water-exit of a circular cylinder [C]. Proceedings of the 24th International Workshop on Water Waves and Floating Bodies. Zelenogorsk, Russia, 2009, 19–22.

    Google Scholar 

  170. Zhu X. Application of the CIP method to strongly non-linear wave-body interaction problems [D]. Doctoral Thesis, Trondheim, Norway: Norwegian University of Science and Technology, 2006.

    Google Scholar 

  171. Ni B. Y., Zhang A. M., Wu G. X. Simulation of complete water exit of a fully-submerged body [J]. Journal of Fluids and Structures, 2015, 58: 79–98.

    Article  Google Scholar 

  172. Wang S., Zhang G., Feng S. et al. Numerical simulation for 2D water-exit problem based on boundary element method [J]. Journal of Dalian Maritime University, 2016, 42(4): 26–32 (in Chinese).

    Google Scholar 

  173. Gang M. Hydrodynamic forces and dynamic responses of circular cylinders on wave zones [D]. Doctoral Thesis, Trondheim, Norway: Norwegian Institute of Technology, 1989.

    Google Scholar 

  174. Pan K., IJzermans R., Jones B. et al. Application of the SPH method to solitary wave impact on an offshore plat-form [J]. Computational Particle Mechanics, 2016, 3(2): 155–166.

    Article  Google Scholar 

  175. Zhao X., Hu C. Numerical and experimental study on a 2-D floating body under extreme wave conditions [J]. Applied Ocean Research, 2012, 35: 1–13.

    Article  Google Scholar 

  176. Zhao X., Ye Z., Fu Y. et al. A CIP-based numerical simulation of freak wave impact on a floating body [J]. Ocean Engineering, 2014, 87: 50–63.

    Article  Google Scholar 

  177. Zhao X. Z., Hu C. H. Numerical and experimental study on a 2-D floating body under extreme wave conditions [J]. Applied Ocean Research, 2012, 35: 1–13.

    Article  Google Scholar 

  178. Idelsohn S., Onate E., Del Pin F. et al. Fluid–structure interaction using the particle finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17): 2100–2123.

    Article  MathSciNet  MATH  Google Scholar 

  179. Le Touzé D., Marsh A., Oger G. et al. SPH simulation of green water and ship flooding scenarios [J]. Journal of Hydrodynamics, 2010, 22(5): 231–236.

    Article  Google Scholar 

  180. Rossi E., Colagrossi A., Bouscasse B. et al. The diffused vortex hydrodynamics method [J]. Communications in Computational Physics, 2015, 18(2): 351–379.

    Article  MathSciNet  MATH  Google Scholar 

  181. Bouscasse B., Colagrossi A., Marrone S. et al. Viscous flow past a circular cylinder below a free surface [C]. ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, USA, 2014.

    Book  Google Scholar 

  182. Bouscasse B., Colagrossi A., Marrone S. et al. High froude number viscous flow past a circular cylinder [C]. ASME 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John’s, Newfoundland, Canada, 2015.

    Book  Google Scholar 

  183. Cercos-Pita J. L., Colagrossi A., Souto-Iglesias A. Low Reynolds flow past a circular cylinder close to a free-surface with vertical motion dynamics [C]. ASME 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, Korea, 2016.

    Book  Google Scholar 

  184. Bouscassea B., Colagrossi A., Marronea S. et al. SPH modelling of viscous flows past a circular cylinder interacting with a free surface [J]. Computers and fluids, 2017.

    Google Scholar 

  185. Sun P. N., Colagrossi A., Marrone S. et al. SPH formulation of FTLE for the detection of Lagrangian coherent structures [C]. Proceeding of the 11th Int. SPHERIC Workshop. Munich, Germany, 2016. 216

    Google Scholar 

  186. Landrini M., Colagrossi A., Greco M. et al. The fluid mechanics of splashing bow waves on ships: A hybrid BEM–SPH analysis [J]. Ocean Engineering, 2012, 53: 111–127.

    Article  Google Scholar 

  187. Morris J. P. Simulating surface tension with smoothed particle hydrodynamics [J]. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333–353.

    Article  MATH  Google Scholar 

  188. Adelsberger J., Esser P., Griebel M. et al. 3D incompressible two-phase flow benchmark computations for rising droplets [C]. Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI). Barcelona, Spain, 2014.

    Google Scholar 

  189. Zhang A., Zhou W., Wang S. et al. Dynamic response of the non-contact underwater explosions on naval equipment [J]. Marine Structures, 2011, 24(4): 396–411.

    Article  Google Scholar 

  190. Zhang A. M., Zeng L. Y., Cheng X. D. et al. The evaluation method of total damage to ship in underwater explosion [J]. Applied Ocean Research, 2011, 33(4): 240–251.

    Article  Google Scholar 

  191. Zhang A. M., Liu Y. L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223.

    Article  MathSciNet  MATH  Google Scholar 

  192. Li S., Han R., Zhang A. M. et al. Analysis of pressure field generated by a collapsing bubble [J]. Ocean Engineering, 2016, 117: 22–38.

    Article  Google Scholar 

  193. Li S., Li Y. B., Zhang A. M. Numerical analysis of the bubble jet impact on a rigid wall [J]. Applied Ocean Research, 2015, 50: 227–236.

    Article  Google Scholar 

  194. Colagrossi A., Marrone S., Bouscasse B. et al. Numerical simulations of the flow past surface-piercing objects [J]. International Journal of Offshore and Polar Engineering, 2015, 25(1): 13–18.

    Google Scholar 

  195. Zhang Z. Q., Yao J., Liu G. R. An immersed smoothed finite element method for fluid–structure interaction problems [J]. International Journal of Computational Methods, 2011, 8(4): 747–757.

    Article  MathSciNet  MATH  Google Scholar 

  196. Yao J., Liu G., Narmoneva D. A. et al. Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves [J]. Computational Mechanics, 2012, 50(6): 789–804.

    Article  MathSciNet  MATH  Google Scholar 

  197. He Z. C., Liu G. R., Zhong Z. H. et al. A coupled ES-FEM/BEM method for fluid–structure interaction problems [J]. Engineering Analysis with Boundary Elements, 2011, 35(1): 140–147.

    Article  MathSciNet  MATH  Google Scholar 

  198. Marrone S., Di Mascio A., Le Touzé D. Coupling of smoothed particle hydrodynamics with finite volume method for free-surface flows [J]. Journal of Computational Physics, 2016, 310: 161–180.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A-man Zhang  (张阿漫).

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. U1430236, 51609049), the China Postdoctoral Science Foundation (Grant No. 2015M581432) and the China Scholarship Council (CSC, Grant No. 201506680004)

Biography: A-man Zhang (1981-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Am., Sun, Pn., Ming, Fr. et al. Smoothed particle hydrodynamics and its applications in fluid-structure interactions. J Hydrodyn 29, 187–216 (2017). https://doi.org/10.1016/S1001-6058(16)60730-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60730-8

Key words

Navigation