Skip to main content
Log in

Heat transfer and flow structure of two-dimensional thermal convection over ratchet surfaces

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper presents a numerical study of the Rayleigh-Bénard convection (RBC) in two-dimensional cells with asymmetric (ratchet) roughness distributed on the top and bottom surfaces. We consider two aspect ratios of roughness γ = 1, 2 and the range of the Rayleigh number 1.0 × 106Ra ≤ 2.0 × 1010 with the Prandtl number Pr = 4. The influences of the roughness on the heat transfer and the flow structure are found to be strongly dependent on both Ra and the roughness geometry. We find that the roughness can have a significant influence on the organization of the secondary corner rolls, and the corner rolls are evidently suppressed by the roughness for intermediate values of Ra. In the presence of the roughness, a sharp jump of the Nu values is identified as the Ra value is slightly increased, accompanied with the dramatic changes of the large-scale flow structure and the plume dynamics. The influences of the ratchet orientation on the heat transfer and the flow structure are discussed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection [J]. Reviews of Modern Physics, 2009, 81(2): 503–537.

    Article  Google Scholar 

  2. Lohse D., Xia K. Q. Small-scale properties of turbulent Rayleigh-Bénard convection [J]. Annual Review of Fluid Mechanics, 2010, 42: 335–364.

    Article  Google Scholar 

  3. Chilla F., Schumacher J. New perspectives in turbulent Rayleigh-Bénard convection [J]. The European Physical Journal E, 2012, 35(7): 58.

    Article  Google Scholar 

  4. Xia K. Q. Current trends and future directions in turbulent thermal convection [J]. Theoretical and Applied Mechanics Letters, 2013, 3(5): 052001.

    Article  Google Scholar 

  5. Shen Y., Tong P., Xia K. Q. Turbulent convection over rough surfaces [J]. Physical Review Letters, 1996, 76(6): 908–911.

    Article  Google Scholar 

  6. Du Y. B., Tong P. Enhanced heat transport in turbulent convection over a rough surface [J]. Physical Review Letters, 1998, 81(5): 987–990.

    Article  Google Scholar 

  7. Du Y. B., Tong P. Turbulent thermal convection in a cell with ordered rough boundaries [J]. Journal of Fluid Mechanics, 2000, 407: 57–84.

    Article  Google Scholar 

  8. Villermaux E. Transfer at rough sheared interfaces [J]. Physical Review Letters, 1998, 81(22): 4859–4862.

    Article  Google Scholar 

  9. Ciliberto S., Laroche C. Random roughness of boundary increases the turbulent convection scaling exponent [J]. Physical Review Letters, 1999, 82(20): 3998–4001.

    Article  Google Scholar 

  10. Roche P. E., Castaing B., Chabaud B. et al. Observation of the 1/2 power law in Rayleigh-Bénard convection [J]. Physical Review E, 2001, 63(4): 045303.

    Article  Google Scholar 

  11. Xie Y. C., Xia K. Q. Turbulent thermal convection over rough plates with varying roughness geometries [J]. Journal of Fluid Mechanics, 2017, 825: 573–599.

    Article  MathSciNet  Google Scholar 

  12. Toppaladoddi S., Succi S., Wettlaufer J. S. Roughness as a route to the ultimate regime of thermal convection [J]. Physical Review Letters, 2017, 118(7): 074503.

    Article  Google Scholar 

  13. Zhu X., Stevens R. J. A. M., Verzicco R. et al. Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection [J]. Physical Review Letters, 2017, 119(15): 154501.

    Article  Google Scholar 

  14. Xu B. L., Wang Q., Wan Z. H. et al. Heat transport enhancement and scaling law transition in two-dimensional Rayleigh-Bénard convection with rectangular-type roughness [J]. International Journal of Heat and Mass Transfer, 2018, 121: 872–883.

    Article  Google Scholar 

  15. Zhu X., Stevens R. J. A. M., Shishkina O. et al. Nu∼Ra1/2 scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence [J]. Journal of Fluid Mechanics, 2019, 869: R4.

    Article  Google Scholar 

  16. Toppaladoddi S., Wells A. J., Doering C. R. et al. Thermal convection over fractal surfaces [J]. Journal of Fluid Mechanics, 2021, 907: A12.

    Article  MathSciNet  Google Scholar 

  17. Zhang Y. Z., Sun C., Bao Y. et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection [J]. Journal of Fluid Mechanics, 2018, 836: R2.

    Article  Google Scholar 

  18. Yang J. L., Zhang Y. Z., Jin T. C. et al. The Pr- dependence of the critical roughness height in two-dimensional turbulent Rayleigh-Bénard convection [J]. Journal of Fluid Mechanics, 2021, 911: A52.

    Article  Google Scholar 

  19. Jiang H., Zhu X., Mathai V. et al. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces [J]. Physical Review Letters, 2018, 120(4): 044501.

    Article  Google Scholar 

  20. Verzicco R., Orlandi P. A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates [J]. Journal of Computational Physics, 1996, 123(2): 402–414.

    Article  MathSciNet  Google Scholar 

  21. van der Poel E. P., Ostilla-Monico R., Donners J. et al. A pencil distributed finite difference code for strongly turbulent wall-bounded flows [J]. Computers and Fluids, 2015, 116: 10–16.

    Article  MathSciNet  Google Scholar 

  22. Jiang H., Zhu X., Mathai V. et al. Convective heat transfer along ratchet surfaces in vertical natural convection [J]. Journal of Fluid Mechanics, 2019, 873: 1055–1071.

    Article  MathSciNet  Google Scholar 

  23. Fadlun E. A., Verzicco R., Orlandi P. et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations [J]. Journal of Computational Physics, 2000, 161(1): 35–60.

    Article  MathSciNet  Google Scholar 

  24. Shishkina O., Stevens R. J. A. M., Grossmann S. et al. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution [J]. New Journal of Physics, 2010, 12(7): 075022.

    Article  Google Scholar 

  25. Zhang Y., Zhou Q., Sun C. Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh-Bénard convection [J]. Journal of Fluid Mechanics, 2017, 814: 165–184.

    Article  MathSciNet  Google Scholar 

  26. Moffatt H. K. Viscous and resistive eddies near a sharp corner [J]. Journal of Fluid Mechanics, 1964, 18: 1–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Additional information

Projects supported by the Natural Science Foundation of China (Grant Nos. 11988102, 91852202), the China Postdoctoral Science Foundation (Grant No. 2019M660614).

Biography

Cheng Wang (1997-), Male, Ph. D. Candidate, E-mail: wangc19@mails.tsinghua.edu.cn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Jiang, Lf., Jiang, Hc. et al. Heat transfer and flow structure of two-dimensional thermal convection over ratchet surfaces. J Hydrodyn 33, 970–978 (2021). https://doi.org/10.1007/s42241-021-0086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0086-9

Key words

Navigation