Skip to main content
Log in

Heat transfer and plume statistics in turbulent thermal convection with sparse fractal roughness

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Rough-surface Rayleigh-Bénard convection is investigated using direct numerical simulations in two-dimensional convection cells with aspect ratio Γ=2. Three types of fractal roughness elements, which are marked as n1, n2 and n3, are constructed based on the Koch curve and sparsely mounted on both the plates, where n denotes the level of the roughness. The considered Rayleigh numbers Ra range from 107 to 1011 with Prandtl number Pr =1. Two regimes are identified for cases n1, n2. In Regime I, the scaling exponents β in the effective Nusselt number Nu vs Ra scaling NuRaβ reach up to about 0.4. However, when Ra is larger than a critical value Rac, the flow enters Regime II, with β saturating back to a value close to the smooth-wall case (0.3). Rac is found to increase with increasing n, and for case n3, only Regime I is identified in the studied Ra range. The extension of Regime I in case n3 is due to the fact that at high Ra, the smallest roughness elements can play a role to disrupt the thermal boundary layers. The thermal dissipation rate is studied and it is found that the increased β in Regime I is related with enhanced thermal dissipation rate in the bulk. An interesting finding is that no clear convection roll structures can be identified for the rough cases, which is different from the smooth case where well-organized convection rolls can be found. This difference is further quantified by the detailed analysis of the plume statistics, and it is found that the horizontal profiles of plume density and velocity are relatively flattened due to the absence of clear convection rolls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection [J]. Reviews of Modern Physics, 2009, 81(2): 503–537.

    Article  Google Scholar 

  2. Chillà F., Schumacher J. New perspectives in turbulent Rayleigh-Bénard convection [J]. The European Physical Journal E, 2012, 35: 58.

    Article  Google Scholar 

  3. Malkus W. V. R. The heat transport and spectrum of thermal turbulence [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1954, 225(1161): 196–212.

    MathSciNet  MATH  Google Scholar 

  4. Kraichnan R. H. Turbulent thermal convection at arbitrary Prandtl number [J]. The Physics of Fluids, 1962, 5(11): 1374–1389.

    Article  Google Scholar 

  5. Grossmann S., Lohse D. Scaling in thermal convection: A unifying theory [J]. Journal of Fluid Mechanics, 2000, 407: 27–56.

    Article  MathSciNet  Google Scholar 

  6. Grossmann S., Lohse D. Thermal convection for large Prandtl numbers [J]. Physical Review Letters, 2001, 86(15): 3316.

    Article  Google Scholar 

  7. Shen Y., Tong P., Xia K. Q. Turbulent convection over rough surfaces [J]. Physical Review Letters, 1996, 76(6): 908–911.

    Article  Google Scholar 

  8. Du Y. B., Tong P. Enhanced heat transport in turbulent convection over a rough surface [J]. Physical Review Letters, 1998, 81(5): 987–990.

    Article  Google Scholar 

  9. Du Y B., Tong P. Turbulent thermal convection in a cell with ordered rough boundaries [J]. Journal of Fluid Mechanics, 2000, 407: 57–84.

    Article  Google Scholar 

  10. Qiu X. L., Xia K. Q., Tong P. Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection [J]. Journal of Turbulence, 2005, (6): N30.

  11. Wei P., Chan T. S., Ni R. et al. Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection [J]. Journal of Fluid Mechanics, 2014, 740: 28–46.

    Article  MathSciNet  Google Scholar 

  12. Xie Y. C., Xia K. Q. Turbulent thermal convection over rough plates with varying roughness geometries [J]. Journal of Fluid Mechanics, 2017, 825: 573–599.

    Article  MathSciNet  Google Scholar 

  13. Roche P. E., Castaing B., Chabaud B. et al. Observation of the 1/2 power law in Rayleigh-Bénard convection [J]. Physical Review E, 2001, 63(4): 045303.

    Article  Google Scholar 

  14. Stringano G., Pascazio G., Verzicco R. Turbulent thermal convection over grooved plates [J]. Journal of Fluid Mechanics, 2006, 557: 307–336.

    Article  Google Scholar 

  15. Zhang Y. Z., Sun C., Bao Y. et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection [J]. Journal of Fluid Mechanics, 2018, 836: R2.

    Article  Google Scholar 

  16. Dong D. L., Wang B. F., Dong Y. H. et al. Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection [J]. Physics of Fluids, 2020, 32(4): 045114.

    Article  Google Scholar 

  17. Zhu X., Stevens R. J. A. M., Verzicco R. et al. Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection [J]. Physical Review Letters, 2017, 119(15): 154501.

    Article  Google Scholar 

  18. Tisserand J. C., Creyssels M., Gasteuil Y. et al. Comparison between rough and smooth plates within the same Rayleigh-Bénard cell [J]. Physics of Fluids, 2011, 23(1): 015105.

    Article  Google Scholar 

  19. Salort J., Liot O., Rusaouen E. et al. Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: Flow structure and multistability [J]. Physics of Fluids, 2014, 26(1): 015112.

    Article  Google Scholar 

  20. Liot O., Salort J., Kaiser R. et al. Boundary layer structure in a rough Rayleigh-Bénard cell filled with air [J]. Journal of Fluid Mechanics, 2016, 786: 275–293.

    Article  MathSciNet  Google Scholar 

  21. Shishkina O., Wagner C. Modelling the influence of wall roughness on heat transfer in thermal convection [J]. Journal of Fluid Mechanics, 2011, 686: 568.

    Article  Google Scholar 

  22. Wagner S., Shishkina O. Heat flux enhancement by regular surface roughness in turbulent thermal convection [J]. Journal of Fluid Mechanics, 2015, 763: 109–135.

    Article  MathSciNet  Google Scholar 

  23. Xu B. L., Wang Q., Wan Z. H. et al. Heat transport enhancement and scaling law transition in two-dimensional Rayleigh-Bénard convection with rectangular-type roughness [J]. International Journal of Heat and Mass Transfer, 2018, 121: 872–883.

    Article  Google Scholar 

  24. Jiang H., Zhu X., Mathai V. et al. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces [J]. Physical Review Letters, 2018, 120(4): 044501.

    Article  Google Scholar 

  25. Emran M. S., Shishkina O. Natural convection in cylindrical containers with isothermal ring-shaped obstacles [J]. Journal of Fluid Mechanics, 2020, 882: A3.

    Article  MathSciNet  Google Scholar 

  26. Zhu X., Stevens R. J. A. M., Shishkina O. et al. Nu∼Ra1/2 scaling enabled by multiscale wall roughness in Rayleigh-Bénard turbulence [J]. Journal of Fluid Mechanics, 2019, 869: R4.

    Article  Google Scholar 

  27. Verzicco R., Orlandi P. A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates [J]. Journal of Computational Physics, 1996, 123(2): 402–414.

    Article  MathSciNet  Google Scholar 

  28. van der Poel E. P., Ostilla-Mónico R., Donners J., et al. A pencil distributed finite difference code for strongly turbulent wall-bounded flows [J]. Computers and Fluids, 2015, 116: 10–16.

    Article  MathSciNet  Google Scholar 

  29. Fadlun E. A., Verzicco R., Orlandi P. et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations [J]. Journal of Computational Physics, 2000, 161(1): 35–60.

    Article  MathSciNet  Google Scholar 

  30. Koch H. V. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire [J]. Arkiv for Matematik, Astronomi och Fysik, 1904, 1: 681–704.

    MATH  Google Scholar 

  31. Wang Q., Verzicco R., Lohse D. et al. Multiple states in turbulent large-aspect-ratio thermal convection: what determines the number of convection rolls? [J]. Physical Review Letters, 2020, 125(7): 074501.

    Article  Google Scholar 

  32. Zhang Y., Zhou Q., Sun C. Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh-Bénard convection [J]. Journal of Fluid Mechanics, 2017, 814: 165–184.

    Article  MathSciNet  Google Scholar 

  33. Kolmogorov A. N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number [J]. Journal of Fluid Mechanics, 1962, 13: 82–85.

    Article  MathSciNet  Google Scholar 

  34. Kaczorowski M., Wagner C. Analysis of the thermal plumes in turbulent Rayleigh-Bénard convection based on well-resolved numerical simulations [J]. Journal of Fluid Mechanics, 2009, 618: 89–112.

    Article  Google Scholar 

  35. Zhou S. Q., Xie Y. C., Sun C. et al. Statistical characterization of thermal plumes in turbulent thermal convection [J]. Physical Review Fluids, 2016, 1(5): 054301.

    Article  Google Scholar 

  36. Chong K. L., Yang Y., Huang S. D. et al. Confined Rayleigh-Bénard, rotating Rayleigh-Bénard, and double diffusive convection: A unifying view on turbulent transport enhancement through coherent structure manipulation [J]. Physical Review Letters, 2017, 119(6): 064501.

    Article  Google Scholar 

  37. Belkadi M., Guislain L., Sergent A. et al. Experimental and numerical shadowgraph in turbulent Rayleigh-Bénard convection with a rough boundary: Investigation of plumes [J]. Journal of Fluid Mechanics, 2020, 895: A7.

    Article  Google Scholar 

  38. von Gioi R. G., Jakubowicz J., Morel J. M. et al. LSD: A line segment detector [J]. Image Processing On Line, 2012, 2: 35–55.

    Article  Google Scholar 

  39. Sun C., Liu S., Wang Q. et al. Bifurcations in penetrative Rayleigh-Bénard convection in a cylindrical container [J]. Applied Mathematics and Mechanics, (English Edition), 2019, 40(5): 695–704.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Fund from the University of Science and Technology of China. Zhen-hua Wan acknowledges helpful discussions with Prof. Chao Sun at the Tsinghua University. The numerical simulations in this paper have been carried out on the supercomputing system in the Supercomputing Center of the University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-hua Wan.

Additional information

Projects supported by the National Natural Science Foundation of China (Grant Nos. 11772323, 91952103 and 11621202).

Biography

Guang-chun Xu (1996-), Male, Master, E-mail: gcxu@mail.ustc.edu.cn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Gc., Wang, Q., Wan, Zh. et al. Heat transfer and plume statistics in turbulent thermal convection with sparse fractal roughness. J Hydrodyn 33, 1065–1077 (2021). https://doi.org/10.1007/s42241-021-0094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0094-9

Key words

Navigation