Skip to main content
Log in

Flow structures of turbulent Rayleigh–Bénard convection in annular cells with aspect ratio one and larger

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We present an experimental study of flow structures in turbulent Rayleigh–Bénard convection in annular cells of aspect ratios \(\varGamma =1\), 2 and 4, and radius ratio \(\backsimeq \) 0.5. The convecting fluid is water with Prandtl number \(Pr= 4.3\) and 5.3. Rayleigh number Ra ranges \(4.8 \times 10^{7} \le Ra \le 4.5 \times 10^{10}\). The dipole state (two-roll flow structure) for \(\varGamma = 1\) and the quadrupole state (four-roll flow structure) for \(\varGamma = 2\) and 4 are found by multi-temperature-probe measurement. Nusselt number Nu is described by a power-law scaling \(Nu=0.11Ra^{0.31}\), which is insensitive to the change of flow structures. However, the Reynolds number Re is influenced by increasing aspect ratios, where Re is found to scale with Ra and \(\varGamma \) as \(Re\sim Ra^{0.46}\varGamma ^{-0.52}\). The normalized amplitudes of two flow structures as a function of Ra exist difference. Based on relative weights of the first four modes using the Fourier analysis, we find that the first mode dominates in \(\varGamma =1\) cell, but the second mode contains the most energy in \(\varGamma =2\) and 4 cells. With increasing \(\varGamma \), the flow structures exhibit different characteristics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537 (2009)

    Article  Google Scholar 

  2. Lohse, D., Xia, K.-Q.: Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335–364 (2010)

    Article  MATH  Google Scholar 

  3. Xia, K.-Q.: Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3, 052001 (2013)

    Article  Google Scholar 

  4. Jiang, H., Zhu, X., Mathai, V., et al.: Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces. Phys. Rev. Lett. 120, 044501 (2018)

    Article  Google Scholar 

  5. Wang, Z., Mathai, V., Sun, C.: Self-sustained biphasic catalytic particle turbulence. Nat. commun. 10, 1–7 (2019)

    Google Scholar 

  6. Wang, B.-F., Zhou, Q., Sun, C.: Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6, eaaz8239 (2020)

    Article  Google Scholar 

  7. Wu, J.-Z., Dong, Y.-H., Wang, B.-F., et al.: Phase decomposition analysis on oscillatory Rayleigh–Bénard turbulence. Phys. Fluids 33, 045108 (2021)

    Article  Google Scholar 

  8. Yang, J.-L., Zhang, Y.-Z., Jin, T.-C., et al.: The \(Pr\)-dependence of the critical roughness height in two-dimensional turbulent Rayleigh-Bénard convection. J. Fluid Mech. 911, A5 (2021)

    Google Scholar 

  9. Brown, E., Nikolaenko, A., Ahlers, G.: Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503 (2005)

    Article  Google Scholar 

  10. Sun, C., Xi, H.-D., Xia, K.-Q.: Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502 (2005)

    Article  Google Scholar 

  11. Brown, E., Ahlers, G.: Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351–386 (2006)

    Article  MATH  Google Scholar 

  12. Castaing, B., Gnuaratne, G., Heslot, F., et al.: Scaling of hard thermal turbulence in Rayleigh–Bénard turbulent convection. J. Fluid Mech. 204, 1–30 (1989)

    Article  Google Scholar 

  13. Cioni, S., Ciliberto, S., Sommeria, J.: Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111–140 (1997)

    Article  MathSciNet  Google Scholar 

  14. Qiu, X.-L., Tong, P.: Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304 (2001)

    Article  Google Scholar 

  15. Ji, D., Brown, E.: Oscillation in the temperature profile of the large-scale circulation of turbulent convection induced by a cubic container. Phys. Rev. Fluids 5, 063501 (2020)

    Article  Google Scholar 

  16. Zhou, Q., Xi, H.-D., Zhou, S.-Q., et al.: Oscillations of the large-scale circulation in turbulent Rayleigh-Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367–390 (2009)

    Article  MATH  Google Scholar 

  17. Niemela, J.J., Skrbek, L., Sreenivasan, K.R., et al.: The wind in confined thermal convection. J. Fluid Mech. 449, 169–178 (2001)

    Article  MATH  Google Scholar 

  18. Xi, H.-D., Xia, K.-Q.: Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75, 066307 (2007)

    Article  Google Scholar 

  19. Huang, S.-D., Xia, K.-Q.: Effects of geometric confinement in quasi-2-D turbulent Rayleigh-Bénard convection. J. Fluid Mech. 794, 639–654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Q., Zhou, Q., Wan, Z.-H., et al.: Penetrative turbulent Rayleigh–Bénard convection in two and three dimensions. J. Fluid Mech. 870, 718–734 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wan, Z.-H., Wang, Q., Wang, B., et al.: On non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection of air for large temperature differences. J. Fluid Mech. 889, A10 (2020)

    Article  Google Scholar 

  22. Dong, D.-L., Wang, B.-F., Dong, Y.-H., et al.: Influence of spatial arrangements of roughness elements on turbulent Rayleigh–Bénard convection. Phys. Fluids 32, 045114 (2020)

    Article  Google Scholar 

  23. Zhang, S., Xia, Z., Zhou, Q., et al.: Controlling flow reversal in two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 891, R4 (2020)

    Article  MATH  Google Scholar 

  24. Chen, X., Wang, D.-P., Xi, H.-D.: Reduced flow reversals in turbulent convection in the absence of corner vortices. J. Fluid Mech. 891, R5 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, A., Chen, X., Xi, H.-D.: Tristable flow states and reversal of the large-scale circulation in two-dimensional circular convection cells. J. Fluid Mech. 910, A33 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xia, K.-Q., Sun, C. Cheung, Y.-H.: Large scale velocity structures in turbulent thermal convection with widely varying aspect ratio. In: 58th Annual Meeting of the Division of Fluid Dynamics. 7-10 (2008)

  27. Verdoold, J., Tummers, M.J., Hanjalić, K.: Oscillating large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. E 73, 056304 (2006)

    Article  Google Scholar 

  28. Verdoold, J., Tummers, M.J., Hanjalić, K.: Prime modes of fluid circulation in large-aspect-ratio turbulent Rayleigh-Bénard convection. Phys. Rev. E 80, 037301 (2009)

    Article  Google Scholar 

  29. du Puits, R., Resagk, C., Thess, A.: Breakdown of wind in turbulent thermal convection. Phys. Rev. E 75, 016302 (2007)

    Article  Google Scholar 

  30. du Puits, R., Resagk, C., Thess, A.: Structure of viscous boundary layers in turbulent Rayleigh-Bénard convection. Phys. Rev. E 80, 036318 (2009)

    Article  Google Scholar 

  31. Sakievich, P., Peet, Y., Adrian, R.: Temporal dynamics of large-scale structures for turbulent Rayleigh–Bénard convection in a moderate aspect-ratio cylinder. J. Fluid Mech. 901, A31 (2020)

    Article  MATH  Google Scholar 

  32. Moller, S., Resagk, C., Cierpka, C.: Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. Exp. Fluids 62, 64 (2021)

    Article  Google Scholar 

  33. Berghout, P., Baars, W., Krug, D.: The large-scale footprint in small-scale Rayleigh–Bénard turbulence. J. Fluid Mech. 911, A62 (2021)

    Article  MATH  Google Scholar 

  34. Pandey, A., Scheel, J.D., Schumacher, J.: Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9, 2118 (2018)

    Article  Google Scholar 

  35. Stevens, R.J.A.M., Blass, A., Zhu, X., et al.: Turbulent thermal superstructures in Rayleigh–Bénard convection. Phys. Rev. Fluids 3, 041501 (2018)

    Article  Google Scholar 

  36. Krug, D., Lohse, D., Stevens, R.J.A.M.: Coherence of temperature and velocity superstructures in turbulent Rayleigh–Bénard flow. J. Fluid Mech. 887, A2 (2020)

    Article  MATH  Google Scholar 

  37. Wang, Q., Verzicco, R., Lohse, D., et al.: Multiple states in turbulent large-aspect-ratio thermal convection: what determines the number of convection rolls? Phys. Rev. Lett. 125, 074501 (2020)

    Article  Google Scholar 

  38. Smits, A.J., McKeon, B.J., Marusic, I.: High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  MATH  Google Scholar 

  39. Grossmann, S., Lohse, D., Sun, C.: High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 53–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Eckhardt, B., Schneider, T.M., Hof, B., et al.: Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wei, P., Weiss, S., Ahlers, G.: Multiple transitions in rotating turbulent Rayleigh–Bénard Convection. Phys. Rev. Lett. 114, 114506 (2015)

    Article  Google Scholar 

  42. Li, Q., Pan, M., Zhou, Q., et al.: Drag reduction of turbulent channel flows over an anisotropic porous wall with reduced spanwise permeability. Appl. Math. Mech. 40, 1041–1052 (2019)

    Article  MathSciNet  Google Scholar 

  43. Qiu, X.-L., Xia, K.-Q.: Viscous boundary layers at the sidewall of a convection cell. Phys. Rev. E 58, 486–491 (1998)

    Article  Google Scholar 

  44. Daya, Z.A., Ecke, R.E.: Does turbulent convection feel the shape of the container? Phys. Rev. Lett. 87, 184501 (2001)

    Article  Google Scholar 

  45. Grossmann, S., Lohse, D.: On geometry effects in Rayleigh–Bénard convection. J. Fluid Mech. 486, 105–114 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Song, H., Tong, P.: Scaling laws in turbulent Rayleigh–Bénard convection under different geometry. Europhys. Lett. 90, 44001 (2010)

    Article  Google Scholar 

  47. Song, H., Brown, E., Hawkins, R., et al.: Dynamics of large-scale circulation of turbulent thermal convection in a horizontal cylinder. J. Fluid Mech. 740, 136–167 (2014)

    Article  Google Scholar 

  48. Wang, Y., Lai, P.-Y., Song, H., et al.: Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4, eaat7480 (2018)

    Article  Google Scholar 

  49. Foroozani, N., Niemela, J.J., Armenio, V., et al.: Reorientations of the large-scale flow in turbulent convection in a cube. Phys. Rev. E 95, 033107 (2017)

    Article  Google Scholar 

  50. Xie, Y.-C., Ding, G.-Y., Xia, K.-Q.: Flow topology transition via global bifurcation in thermally driven turbulence. Phys. Rev. Lett. 120, 214501 (2018)

    Article  Google Scholar 

  51. Zhu, X., Jiang, L.-F., Zhou, Q., et al.: Turbulent Rayleigh–Bénard convection in an annular cell. J. Fluid Mech. 869, R5 (2019)

    Article  MATH  Google Scholar 

  52. Xi, H.-D., Xia, K.-Q.: Flow mode transitions in turbulent thermal convection. Phys. Fluids 20, 055104 (2008)

    Article  MATH  Google Scholar 

  53. Funfschilling, D., Brown, E., Nikolaenko, A., et al.: Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145–154 (2005)

  54. Sun, C., Ren, L.-Y., Song, H., et al.: Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. J. Fluid Mech. 542, 165–174 (2005)

  55. Zhou, Q., Liu, B.-F., Li, C.-M., et al.: Aspect ratio dependence of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells. J. Fluid Mech. 710, 260–276 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun, C., Xia, K.-Q.: Scaling of the Reynolds number in turbulent thermal convection. Phys. Rev. E 72, 067302 (2005)

    Article  Google Scholar 

  57. Yang, Y.-H., Zhu, X., Wang, B.-F., et al.: Experimental investigation of turbulent Rayleigh-Bénard convection of water in a cylindrical cell: the Prandtl number effects for Pr \(>\)1. Phys. Fluids 32, 015101 (2020)

    Article  Google Scholar 

  58. Brown, E., Ahlers, G.: Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh–Bénard convection. Europhys. Lett. 80, 14001 (2007)

    Article  Google Scholar 

  59. Kunnen, R.P.J., Clercx, H.J.H., Geurts, B.J.: Breakdown of large-scale circulation in turbulent rotating convection. Europhys. Lett. 84, 24001 (2008)

    Article  Google Scholar 

  60. Xi, H.-D., Zhang, Y.-B., Hao, J.-T., et al.: Higher-order flow modes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 805, 31–51 (2016)

    Article  MathSciNet  Google Scholar 

  61. Funfschilling, D., Ahlers, G.: Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard Cell. Phys. Rev. Lett. 92, 194502 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11988102, 11825204, 92052201, 91852202), the Program of Shanghai Academic Research Leader (Grant 19XD1421400), and Science and Technology Innovation Plan Of Shanghai Science and Technology Commission (STCSM) (Project 19JC1412802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zhou.

Additional information

Executive Editor: Lihao Feng

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhou, Q. Flow structures of turbulent Rayleigh–Bénard convection in annular cells with aspect ratio one and larger. Acta Mech. Sin. 37, 1291–1298 (2021). https://doi.org/10.1007/s10409-021-01104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01104-z

Keywords

Navigation