Skip to main content
Log in

A Hybrid Territorial Aquatic Bionic Soft Robot with Controllable Transition Capability

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this paper, a bionic mantis shrimp amphibious soft robot based on a dielectric elastomer is proposed to realize highly adaptive underwater multimodal motion. Under the action of an independent actuator, it is not only able to complete forward/backwards motion on land but also has the ability of cyclically controllable transition motion from land to water surface, from water surface to water bottom and from water bottom to land. The fastest speed of the soft robot on land is 170 mm/s, and it can crawl while carrying up to 4.6 times its own weight. The maximum speeds on the water surface and the water bottom are 30 mm/s and 14.4 mm/s, respectively. Furthermore, the soft robot can climb from the water bottom with a 9° slope transition to land. Compared with other similar soft robots, this soft robot has outstanding advantages, such as agile speed, large load-carrying capacity, strong body flexibility, multiple motion modes and strong underwater adaptability. Finally, nonlinear motion models of land crawling and water swimming are proposed to improve the environmental adaptability under multiple modalities, and the correctness of the theoretical model is verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

Availability of Data and Materials

The data that support the findings of this paper are available from the corresponding author, [Yuan Chen], upon reasonable request.

References

  1. Garayev, K., & Murphy, D. W. (2021). Metachronal swimming of mantis shrimp: kinematics and interpleopod vortex interaction. Integrative and Comparative Biology, 61(5), 1631–1643.

    Article  Google Scholar 

  2. Gu, Y. Q., Xia, K., Zhang, W. Q., Mou, J. G., Wu, D. H., Liu, W., Xu, M. S., Zhou, P. J., & Ren, Y. (2021). Airfoil profile surface drag reduction characteristics based on the structure of the mantis shrimp abdominal segment. Archive of Applied Mechanics, 91, 919–932.

    Article  Google Scholar 

  3. Graham, Z. A. (2021). Moving in fast waters: The exaggerated claw gape of the new river crayfish (Cambarus chasmodactlyus) aids in locomotor performance. Biology Letters, 17(5), 20210045.

    Article  Google Scholar 

  4. Ren, K., & Yu, J. C. (2021). Research status of bionic amphibious robots: A review. Ocean Engineering, 227, 108862.

    Article  Google Scholar 

  5. Rafeeq, M., Toha, S. F., Ahmad, S., & Razib, M. A. (2021). Locomotion strategies for amphibious robots-a review. IEEE Access, 9, 26323–26342.

    Article  Google Scholar 

  6. Youn, J. H., Jeong, S. M., Hwang, G., Kim, H., Hyeon, K., Park, J., & Kyung, K. U. (2020). Dielectric elastomer actuator for soft robotics applications and challenges. Applied Sciences, 10(2), 2–32.

    Article  Google Scholar 

  7. Cocuzza, S., Doria, A., & Reis, M. (2021). Vibration-based locomotion of an amphibious robot. Applied Sciences, 11(5), 2–20.

    Article  Google Scholar 

  8. Abbaszadeh, S., Leidhold, R., & Hoerner, S. (2022). A design concept and kinematic model for a soft aquatic robot with complex bio-mimicking motion. Journal of Bionic Engineering, 19(1), 16–28.

    Article  Google Scholar 

  9. Du, Z. W., Fang, H. B., & Xu, J. (2022). Snake-worm: A bi-modal locomotion robot. Journal of Bionic Engineering, 19, 1272–1287.

    Article  Google Scholar 

  10. Li, G. R., Chen, X. P., Zhou, F. H., Liang, Y. M., Xiao, Y. H., Cao, X. N., Zhang, Z., Zhang, M. Q., Wu, B. S., Yin, S. Y., Xu, Y., Fan, H. B., Chen, Z., Song, W., Yang, W. J., Pan, B. B., Hou, J. Y., Zou, W. F., He, S. P., … Yang, W. (2021). Self-powered soft robot in the mariana trench. Nature, 591(7848), 66–71.

    Article  Google Scholar 

  11. Ahmed, F., Waqas, M., Shaikh, B., Khan, U., Soomro, A. M., Kumar, S., Ashraf, H., Memon, F. H., & Choi, K. H. (2022). Multi-material bio-inspired soft octopus robot for underwater synchronous swimming. Journal of Bionic Engineering, 19, 1229–1241.

    Article  Google Scholar 

  12. Lee, Y., Song, W. J., & Sun, J. Y. (2020). Hydrogel soft robotics. Materials Today. Physics, 15(6), 100258.

    Google Scholar 

  13. Traver, J. E., Nuevo-Gallardo, C., Rodríguez, P., Tejado, I., & Vinagre, B. M. (2022). Modeling and control of IPMC-based artificial eukaryotic flagellum swimming robot: Distributed actuation. Algorithms, 15(6), 181.

    Article  Google Scholar 

  14. Fan, J. Z., Wang, S. Q., Yu, Q. G., & Zhu, Y. H. (2020). Experimental study on frog-inspired swimming robot based on srticulated pneumatic soft actuator. Journal of Bionic Engineering, 17(2), 270–280.

    Article  Google Scholar 

  15. Ding, L., Niu, L. Z., Su, Y., Yang, H. G., Liu, G. J., Gao, H. B., & Deng, Z. Q. (2022). Dynamic finite element modeling and simulation of soft robots. Chinese Journal of Mechanical Engineering, 35(1), 1–11.

    Article  Google Scholar 

  16. Li, J. P., Cai, J. J., Wan, N., Hu, Y. L., Wen, J. M., Kan, J. W., Chen, S., & Zhao, H. W. (2021). A novel bionic piezoelectric actuator based on the walrus motion. Journal of Bionic Engineering, 18(5), 1117–1125.

    Article  Google Scholar 

  17. Manamanchaiyaporn, L., Xu, T. T., & Wu, X. Y. (2020). Magnetic soft robot with the triangular head–tail morphology inspired by lateral undulation. IEEE/ASME Transactions on Mechatronics, 25(6), 2688–2699.

    Article  Google Scholar 

  18. Wang, S., Huang, B., McCoul, D., Li, M. Y., Mu, L. L., & Zhao, J. W. (2019). A soft breaststroke-inspired swimming robot actuated by dielectric elastomers. Smart Materials and Structures, 28(4), 045006.

    Article  Google Scholar 

  19. Gu, G. Y., Zou, J., Zhao, R. K., Zhao, X. H., & Zhu, X. Y. (2018). Soft wall-climbing robots. Robotics, 3(25), eaat2874.

    Article  Google Scholar 

  20. Cao, J. W., Qin, L., Liu, J., Ren, Q. Y., Foo, C. C., Wang, H. Q., Lee, H. P., & Zhu, J. (2018). Untethered soft robot capable of stable locomotion using soft electrostatic actuators. Extreme Mechanics Letters, 21, 9–16.

    Article  Google Scholar 

  21. Youn, J. H., Jeong, S. M., Hwang, G., Kim, H., Hyeon, K., Park, J., & Kyung, K. U. (2020). Dielectric elastomer actuator for soft robotics applications and challenges. Applied Sciences, 10(2), 3–32.

    Article  Google Scholar 

  22. Nie, R. P., Tang, W. B., Chen, C., Huang, H. D., Li, Y., Dai, K., Lei, J., & Li, Z. M. (2021). Superior actuation performance and healability achieved in a transparent, highly stretchable dielectric elastomer film. Journal of Materials Chemistry C, 9(36), 12239–12247.

    Article  Google Scholar 

  23. Sun, W. J., Li, B., Zhang, F., Fang, C. L., Lu, Y. J., Gao, X., Gao, C. J., Chen, G. M., Zhang, C., & Wang, Z. L. (2021). TENG-Bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy, 85, 2–11.

    Article  Google Scholar 

  24. Milana E., Van Raemdonck B., Cornelis K., Dehaerne E., De Clerck, J., De Groof Y., Toon De Vil., Benjamin G., & Reynaerts, D. (2020). Eelworm: a bioinspired multimodal amphibious soft robot. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA 2020, pp. 766–771.

  25. Chen, Y. F., Doshi, N., Goldberg, B., Wang, H. Q., & Wood, R. J. (2018). Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nature Communications, 9(1), 2495.

    Article  Google Scholar 

  26. Tang, C., Li, B., Fang, H. B., Li, Z. Q., & Chen, H. L. (2018). A speedy, amphibian, robotic cube: Resonance actuation by a dielectric elastomer. Sensors and Actuators A: Physical, 270, 1–7.

    Article  Google Scholar 

  27. Li, T. F., Zou, Z. A., Mao, G. Y., Yang, X. X., Liang, Y. M., Li, C., Qu, S. X., Suo, Z. Q., & Yang, W. (2019). Agile and resilient insect-scale robot. Soft Robotics, 6(1), 133–141.

    Article  Google Scholar 

  28. Li, Y. Q., Fish, F., Chen, Y. H., Ren, T., & Zhou, J. S. (2019). Bio-inspired robotic dog paddling: Kinematic and hydro-dynamic analysis. Bioinspiration & Biomimetics, 14(6), 066008.

    Article  Google Scholar 

  29. Du, T., Hughes, J., Wah, S., Matusik, W., & Rus, D. (2021). Underwater soft robot modeling and control with differentiable simulation. IEEE Robotics and Automation Letters, 6(3), 4994–5001.

    Article  Google Scholar 

  30. Huang, H. C., Sheng, C. W., Wu, J. N., Wu, G., Zhou, C. L., & Wang, H. Z. (2021). Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot. Applied Ocean Research, 108, 102528.

    Article  Google Scholar 

  31. Ishida, M., Drotman, D., Shih, B., Hermes, M., Luhar, M., & Tolley, M. T. (2019). Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot. IEEE Robotics and Automation Letters, 4(4), 4163–4169.

    Article  Google Scholar 

  32. Harrison, J. S., Porter, M. L., McHenry, M. J., Robinson, H. E., & Patek, S. N. (2021). Scaling and development of elastic mechanisms: the tiny strikes of larval mantis shrimp. Journal of Experimental Biology, 224(8), jeb235465.

    Article  Google Scholar 

  33. Wortham, J. L., & Kostecka, L. G. (2019). Grooming behaviors and setal morphology in smasher and spearer mantis shrimps (Stomatopoda). Journal of Crustacean Biology, 39(1), 11–21.

    Article  Google Scholar 

  34. Garayev, K., & Murphy, D. W. (2021). Metachronal swimming of mantis shrimp: Kinematics and interpleopod vortex interactions. Integrative and Comparative Biology, 61(5), 1631–1643.

    Article  Google Scholar 

  35. Calabrese, L., Berardo, A., De Rossi, D., Gei, M., Pugno, N. M., & Fantoni, G. (2019). A soft robot structure with limbless resonant, stick and slip locomotion. Smart Materials and Structures, 28(10), 104005.

    Article  Google Scholar 

  36. Chen, Y. L., Liu, H., Zhang, Z. M., Hou, J. Y., & Gong, Y. J. (2018). Nonlinear dynamics modeling and analysis of underwater mud-penetrator steering system. IEEE Access, 6, 51206–51216.

    Article  Google Scholar 

  37. Li, T. F., Li, G. R., Liang, Y. M., Cheng, T. Y., Dai, J., Yang, X. X., Liu, B. Y., Zeng, Z. D., Huang, Z. L., Luo, Y. W., Xie, T., & Yang, W. (2017). Fast-moving soft electronic fish. Science. Advances, 3(4), e1602045.

    Google Scholar 

  38. Sugar-Gabor, O. (2019). Nonlinear lifting-line model using a vector formulation of the unsteady Kutta-Joukowski theorem. INCAS Bulletin, 11(1), 189–203.

    Article  Google Scholar 

  39. Shintake, J., Cacucciolo, V., Shea, H., & Floreano, D. (2018). Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robotics, 5(4), 466–474.

    Article  Google Scholar 

Download references

Acknowledgements

A grateful acknowledgement is given to the National Natural Science Foundation of China with Grant No. 52075293, Natural Science Foundation of Shandong Province with Grant No. ZR2019MEE019 and Research Project of Teaching Reform for Shandong University at Weihai with Grant No.Z2019022.

Funding

Innovative Research Group Project of the National Natural Science Foundation of China, Natural Science Foundation of Shandong Province with Grant No. ZR2019MEE019, Fundamental Research Funds for the Central University with Grant No. 2019ZRJC006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Chen.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4899 KB)

Supplementary file2 (MP4 9722 KB)

Supplementary file3 (MP4 5035 KB)

Supplementary file4 (MP4 6728 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, F., Jing, Z. et al. A Hybrid Territorial Aquatic Bionic Soft Robot with Controllable Transition Capability. J Bionic Eng 20, 568–583 (2023). https://doi.org/10.1007/s42235-022-00294-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00294-x

Keywords

Navigation