Skip to main content

Advertisement

Log in

Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this study, polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) membrane is fabricated via electrospinning method. Results indicate that the morphology of PVDF/PAN membrane is relatively uniform and its fiber diameter is mostly in the range of 100–300 nm. Meanwhile, β-phase is dominant (i.e., the β-phase content is 83.4%) in such membrane, and their tensile properties (i.e., tensile strength and elongation at break) are about 7 MPa and 26%, respectively. In addition, the membrane can be used as a piezoelectric nanogenerator due to its high β-phase content of PVDF. The piezoelectric nanogenerators (PENG) exhibit a good piezoelectric output voltage of 1.3 V when the impacting force is 1 N and durability. Moreover, it shows promising applications for real-time monitoring human movement (i.e., hopping, running, and walking) and different finger bending. Furthermore, such PVDF/PAN membrane can be utilized as a separator for sodium-ion battery, and the cell exhibits a stable cycle performance with a coulombic efficiency of 98.9% after 50 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu G, Chen X, Zhu Z, Wu P, Wang H, Chen X, Gao W, Liu Z (2020) Pulse gas-assisted multi-needle electrospinning of nanofibers. Adv Compos Hybrid Mater 3:98–113

    CAS  Google Scholar 

  2. Pan H, Li LM, Hu L, Cui XJ (2006) Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer 47:4901–4904

    CAS  Google Scholar 

  3. Wang X, Liu XH, Schubert DW (2021) Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano Micro Lett 13:64

    Google Scholar 

  4. Ahmed RM (2017) Surface characterization and optical study on electrospun nanofibers of PVDF/PAN blends. Fiber Integr Opt 36:78–90

    CAS  Google Scholar 

  5. Jalili AR, Morshed M, Ravandi SAH (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101:4350–4357

    CAS  Google Scholar 

  6. Guan XY, Xu BG, Gong JL (2020) Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 70:104516

  7. Chamankar N, Khajavi R, Yousefi AA, Rashidi A, Golestanifard F (2020) A Flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram Int 46:19669-19681

  8. Panthi G, Ranjit R, Khadka S, Gyawali KR, Kim HY, Park M (2020) Characterization and antibacterial activity of rice grain-shaped ZnS nanoparticles immobilized inside the polymer electrospun nanofibers. Adv Compos Hybrid Mater 3:8–15

    CAS  Google Scholar 

  9. Wang WY, Zheng YD, Jin X, Sun Y, Lu BB, Wang HX, Fang J, Shao H, Lin T (2019) Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy 56:588–594

    CAS  Google Scholar 

  10. Görgün N, Özer Ç, Polat K (2019) A new catalyst material from electrospun PVDF-HFP nanofibers by using magnetron-sputter coating for the treatment of dye-polluted waters. Adv Compos Hybrid Mater 2:423–430

    Google Scholar 

  11. Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462

    CAS  Google Scholar 

  12. Huang L, Lin SZ, Xu ZS, Zhou H (2020) Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater 32:1902034

    CAS  Google Scholar 

  13. Chen JW, Yu QL, Cui XH, Dong MY, Zhang JX, Wang C, Fan JC, Zhu YT, Guo ZH (2019) An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C 7:11710–11730

    CAS  Google Scholar 

  14. Jiang N, Chang XH, Hu DW, Chen LR, Wang YP, Chen JW, Zhu YT (2021) Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors. Chem Eng J 424:130418

  15. Jiang N, Hu DW, Xu YQ, Chen JW, Chang XH, Zhu YT, Li YJ, Guo ZH (2021) Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. Adv Compos Hybrid Mater 4:574–583

    CAS  Google Scholar 

  16. Jiang N, Li H, Hu DW, Xu YQ, Hu YX, Zhu YT, Han XY, Zhao GY, Chen JW, Chang XH, Xi M, Yuan Q (2021) Stretchable strain and temperature sensor based on fibrous polyurethane film saturated with ionic liquid. Compos Commun 27:100845

  17. Jia YP, Pan YM, Wang CF, Liu CT, Shen CY, Pan CF, Guo ZH, Liu XH (2021) Flexible Ag microparticle/MXene-based film for energy harvesting. Nano Micro Lett 13:201

    CAS  Google Scholar 

  18. Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121

    CAS  Google Scholar 

  19. Anvari A, Yancheshme AA, Rekaabdar F, Hemmati M, Tavakolmoghadam M, Safekordi A (2017) PVDF/PAN Blend Membrane: Preparation, Characterization and Fouling Analysis. J Polym Environ 25:1348-1358

  20. Singh V, Singh B (2020) Fabrication of PVDF-transition metal dichalcogenides based flexible piezoelectric Nanogenerator for energy harvesting applications. Mater Today Proceed 28:282–285

    CAS  Google Scholar 

  21. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci. http://www.espublisher.com/journals/articledetails/518

  22. Aqeel SM, Huang Z, Walton J, Baker C, Zhe W (2018) Polyvinylidene fluoride (PVDF)/polyacry-onitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1:185–192

    CAS  Google Scholar 

  23. Shao H, Fang J, Wang H, Lang C, Lin T (2015) Robust mechanical-to-electrical energy conversion from short-distance electrospun poly(vinylidene fluoride) fiber webs. ACS Appl Mater Interf 7:22551–22557

    CAS  Google Scholar 

  24. Ferreira A, Lanceros-Mendez S (2016) Piezoresistive response of spray-printed carbon nanotube/poly(vinylidene fluoride) composites. Compos B 96:242–247

    CAS  Google Scholar 

  25. Mandal D, Yoon S, Kim KJ (2011) Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol Rapid Commun 32:831–837

    CAS  Google Scholar 

  26. Ahn Y, Lim J, Hong S, Lee J, Ha J, Seo Y (2013) Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride). J Phys Chem C 117:11791–11799

    CAS  Google Scholar 

  27. Ghafari E, Lu N (2019) Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications. Compos B 160:1–9

    CAS  Google Scholar 

  28. Li GY, Li J, Li ZJ, Zhang YP, Zhang X, Wang ZJ, Han WP, Sun B, Long YZ, Zhang HD (2021) Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00331-z

    Article  Google Scholar 

  29. Saxena P, Shukla P (2021) A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv Compos Hybrid Mater 4:8–26

    CAS  Google Scholar 

  30. Wang QM, Zhang JM, Zhang ZD, Hao YN, Bi K (2020) Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv Compos Hybrid Mater 3:58–65

    CAS  Google Scholar 

  31. Janakiraman S, Padmaraj O, Ghosh S, Venimadhav A (2018) A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. J Electroanal Chem 826:142

    CAS  Google Scholar 

  32. Janakiraman S, Surendran A, Ghosh S, Anandhan S, Venimadhav A (2016) Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ionics 292:130–135

    CAS  Google Scholar 

  33. Mokhtari-Shourijeh Z, Montazerghaem L, Olya ME (2018) Preparation of porous nanofibers from electrospun polyacrylonitrile/polyvinylidene fluoride composite nanofibers by inexpensive salt using for dye adsorption. J Polym Environ 26:3550–3563

    CAS  Google Scholar 

  34. Lim HS, Park SH, Koo SH, Kwark YJ, Thomas EL, Jeong Y, Cho JH (2010) Superamphiphilic Janus fabric. Langmuir 26:19159–19162

    CAS  Google Scholar 

  35. Wang ZY, Su KH, Fan HQ, Wen ZY (2008) Possible reasons that piezoelectricity has not been found in bulk polymer of polyvinylidene cyanide. Polymer 49:2542–2547

    CAS  Google Scholar 

  36. Street R, Minagawa M, Vengrenyuk A, Schauer C (2019) Piezoelectric electrospun polyacrylonitrile with various tacticities. J Appl Polym Sci 136:47530

    Google Scholar 

  37. Ueda H, Carr SH (1984) Piezoelectricity in polyacrylonitrile. Polym J 16:661–667

    CAS  Google Scholar 

  38. Sun F, Huang SY, Ren HT, Li TT, Zhang Y, Lou CW, Lin JH (2020) Core-sheath structured TiO2@PVDF/PAN electrospun membranes for photocatalysis and oil-water separation. Polym Compos 41:1013–1023

    CAS  Google Scholar 

  39. Chen KY, Li GJ, Wang YJ, Chen WH, Mi LW (2020) High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy Environ 5:50–58

    Google Scholar 

  40. Damaraju SM, Wu S, Jaffe M, Arinzeh TL (2013) Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed Mater 8:045007

  41. Zhao ZZ, Li JQ, Yuan XY, Li X, Zhang Y, Sheng J (2005) Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J Appl Polym Sci 97:466–474

    CAS  Google Scholar 

  42. Zheng J, He A, Li J, Han CC (2007) Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun 28:2159–2162

    CAS  Google Scholar 

  43. Yang J, Zhang YH, Li YN, Wang ZH, An Q, Tong WS (2020) Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by in-situ reduction. Mater Today: Commun 26:101629

  44. Victor FS, Kugarajah V, Bangaru M, Ranjan S, Dharmalingam S (2021) Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination. Environ Sci Pollut Res 28:37520–37533

    CAS  Google Scholar 

  45. Haddadi SA, Ghaderi S, Amini M, Ahmad Ramazani SA (2018) Mechanical and piezoelectric characterizations of electrospun PVDF-nanosilica fibrous scaffolds for biomedical applications. Mater Today Proceed 5:15710–15716

    CAS  Google Scholar 

  46. Chen C, Bai ZK, Cao YZ, Dong MC, Jiang KK, Zhou YS, Tao YZ, Gu SJ, Xu J, Yin XZ, Xu WL (2020) Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Compos Sci Technol 192:108100

  47. Zhong GJ, Zhang LF, Su R, Ke W, Hao F, Lei Z (2011) Understanding polymorphism formation in electrospun fibers of immiscible Poly(vinylidene fluoride) blends. Polymer 52:2228–2237

    CAS  Google Scholar 

  48. Ghafari E, Jiang X, Lu N (2018) Surface morphology and beta-phase formation of single polyvinylidene fluoride (PVDF) composite nanofibers. Adv Compos Hybrid Mater 1:332–340

    CAS  Google Scholar 

  49. Yang L, Cheng M, Lyu WY, Shen MX, Qiu JH, Ji HL, Zhao QY (2018) Tunable piezoelectric performance of flexible PVDF based nanocomposites from MWCNTs/graphene/MnO2 three-dimensional architectures under low poling electric fields. Compos A 107:536–544

    CAS  Google Scholar 

  50. Yang L, Qiu JH, Zhu KJ, Ji HL, Zhao QY, Shen MX, Zeng SH (2018) Effect of rolling temperature on the microstructure and electric properties of β-polyvinylidene fluoride films. J Mater Sci Mater Electron 29:15957–15965

    CAS  Google Scholar 

  51. Shi L, Jin H, Dong SR, Huang SY, Kuang HZ, Xu HS, Chen JK, Xuan WP, Zhang SM, Li SJ, Wang XZ, Luo JK (2021) High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 80:105599

  52. Hu JY, Zhu YD, Zhang HL, Gu YY, Yang XD (2017) Structures, mixed effect of main electrospinning parameters on the β-phase crystallinity of electrospun PVDF nanofibers. Smart Mater Struct 26:085019

  53. Zaarour B, Zhu L, Jin XY (2019) Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Mater 17:181–189

    CAS  Google Scholar 

  54. Ramasamy MS, Rahaman A, Kim B (2020) Effect of phenyl-isocyanate functionalized graphene oxide on the crystalline phases, mechanical and piezoelectric properties of electrospun PVDF nanofibers. Ceram Int 47:11010–11021

    Google Scholar 

  55. Nalwa HS (1995) In ferroelectric polymers: chemistry, physics and applications. CRC Press, America

  56. Liu XD, Ruland WJM (1993) X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules 26:3030–3036

    CAS  Google Scholar 

  57. Yin XL, Cheng HB, Wang X, Yao YX (1998) Morphology and properties of hollow-fiber membrane made by PAN mixing with small amount of PVDF. J Membr Sci 146:179–184

    CAS  Google Scholar 

  58. Li N, Xiao C, An S, Hu X (2010) Preparation and properties of PVDF/PVA hollow fiber membranes. Desalination 250(2):530–537

    CAS  Google Scholar 

  59. Wu QY, Liang HQ, Gu L, Yu Y, Huang YQ, Xu ZK (2016) PVDF/PAN blend separators via thermally induced phase separation for lithium ion batteries. Polymer 107:54–60

    CAS  Google Scholar 

  60. Jian Z, Chung TS, O’Brien GS, Kosar W (2017) Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J Membr Sci 523:103–110

    Google Scholar 

  61. Wei DY, Zhou SY, Li MS, Xue AL, Zhang Y, Zhao YJ, Zhong J, Yang DW (2019) PVDF/palygorskite composite ultrafiltration membranes: effects of nano-clay particles on membrane structure and properties. Appl Clay Sci 181:105171

  62. Wang G, Liu T, Sun XC, Li P, Xu YS, Hua JG, Yu YH, Li SX, Dai YZ, Song XY, Lv C, Xia H (2018) Flexible pressure sensor based on PVDF nanofiber. Sens Actuators A 280:319–325

    CAS  Google Scholar 

  63. Abolhasani MM, Shirvanimoghaddam K, Naebe M (2017) PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos Sci Technol 138:49–56

    CAS  Google Scholar 

  64. Habibur RM, Yaqoob U, Muhammad S, Uddin A, Kim HC (2018) The Effect of RGO on dielectric and energy harvesting properties of P(VDF-TrFE) matrix by optimizing electroactive β phase without traditional polling process. Mater Chem Phys 215:46–55

    CAS  Google Scholar 

  65. Bairagi S, Wazed Ali S (2019) A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. Eur Polym J 116:554–561

    CAS  Google Scholar 

  66. Cao CY, Wang HB, Liu WW, Liao XZ, Li L (2014) Nafion membranes as electrolyte and separator for sodium-ion battery. Int J Hydrogen Energy 39:16110–16115

    CAS  Google Scholar 

  67. Janakiraman S, Khalifa M, Biswal R, Ghosh S, Venimadhav A (2020) High performance electrospun nanofiber coated polypropylene membrane as a separator for sodium ion batteries. J Power Sources 460:228060

  68. Kim S, Kwon MS, Han JH, Yuk J, Lee JY, Lee KT, Kim TH (2021) Poly(ethylene-co-vinyl acetate)/polyimide/poly(ethylene-co-vinyl acetate) tri-layer porous separator with high conductivity and tailored thermal shutdown function for application in sodium-ion batteries. J Power Sources 482:228907

  69. Zhou D, Tang X, Guo X, Li P, Shanmukaraj D, Liu H, Gao XC, Wang YZ, Rojo T, Armand M, Wang GX (2020) Polyolefin-based Janus separator for rechargeable sodium batteries. Angew Chem Int Ed 59(38):16725–16734

    CAS  Google Scholar 

Download references

Funding

The authors are grateful for financial support of the National Natural Science Foundation of China (No.51873199) and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 20IRTSTHN002) for financial support. We also thank the Young Teacher Project of Zhongyuan University of Technology (2019XQG05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwei Mi or Xianhu Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 753 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, G., Qin, Q. et al. Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv Compos Hybrid Mater 4, 1215–1225 (2021). https://doi.org/10.1007/s42114-021-00364-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00364-4

Keywords

Navigation