Skip to main content
Log in

Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report on studies of Thermobifida fusca cellulases Cel5A, Cel6B and Cel9A binding to pretreated wood particles using Confocal Laser Scanning Microscopy (CLSM). Hydro-thermal pretreated wood particles were immobilized on borosilicate substrates before fluorescently-labeled cellulase solutions at various concentrations were added. Time-lapse CLSM revealed that cellulases Cel5A, Cel6B and Cel9A quickly bound to certain areas of wood particles, slowly diffused into and adsorbed to less accessible areas, but showed little affinity for other areas of the wood. Cellulase-to-substrate association constants were estimated using a transient enzyme binding kinetics model, and were found to be in agreement with published values. In order to accurately account for the fluorescence signal of labeled enzyme mixed with wood autofluorescence, we also developed a spectral deconvolution method to separate signals from multiple fluorochromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bothwell M, Wilson D, Irwin D, Walker L (1997) Binding reversibility and surface exchange of Thermomonospora fuscs \(\hbox{E}_{3}\) and E 5 and Trichoderma reesei CBHI. Enzym Microbial Technol 20:411–417

    Article  CAS  Google Scholar 

  • Browning, BL (ed) (1963) The chemistry of wood. Wiley, New York

    Google Scholar 

  • Chanzy H, Henrissat B, Vuong R (1984) Colloidal gold labelling of 1,4-β-d-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett 172:193–197

    Article  CAS  Google Scholar 

  • Galbe M, Eklund R, Zacchi G (1990) Adsorption of cellulases on steam-pretreated willow. Appl Biochem Biotech 24(25):87–101

    Article  Google Scholar 

  • Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods Biochem Anal 25:78–86

    CAS  Google Scholar 

  • Jeoh T, Wilson D, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases cel5a, cel6b, and cel9a. Biotechnol Prog 18(4):760–769

    Article  CAS  Google Scholar 

  • Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272(38):24016–24023

    Article  CAS  Google Scholar 

  • Johnson KA (2005) Enzyme kinetics: transient phase. In: Encyclopedia of life sciences. Wiley, New York

  • Jung E, Lao G, Irwin D, Barr B, Benjamin A, Wilson D (1993) Dna-sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59(9):3032–3043

    CAS  Google Scholar 

  • Jung H, Wilson DB, Walker LP (2002a) Binding mechanisms for Thermomonospora fusca Cel5A, Cel6B, and Cel48A cellulose-binding modules on bacterial microcrystalline cellulose. Biotechnol Bioeng 80(4):380–392

    Article  CAS  Google Scholar 

  • Jung H, Wilson DB, Walker LP (2002b) Binding of Thermomonospora fusca \({CD}_{Cel5A},\,{CD}_{Cel6B}\), and CD Cel48A to easily hydrolysable and recalcitrant cellulose fractions on BMCC. Enzym Microbial Technol 31(7):941–948

    Article  CAS  Google Scholar 

  • Jung H, Wilson DB, Walker LP (2003) Binding and reversibility of Thermomonospora fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Biotechnol Bioeng 84(2):151–159

    Article  CAS  Google Scholar 

  • Kim DW, Kim TS, Jeong YK, Lee JK (1992) Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose. J Ferment Bioeng 73:461–466

    Article  CAS  Google Scholar 

  • Li K, Reeve DW (2004) Fluorescent labeling of lignin in the wood pulp fiber wall. J Wood Chem Technol 24(2):169–181

    Article  CAS  Google Scholar 

  • Lundquist K, Josefsson B, Nyquist G (1978) Analysis of lignin products by fluorescence spectroscopy. Holzforschung 32:27–32

    Article  CAS  Google Scholar 

  • Luterbacher JS, Tester J, Walker L (2010) High-solids biphasic co2-h2o pretreatment of lignocellulosic biomass. Biotechnol Bioeng 107:451–460

    Article  CAS  Google Scholar 

  • Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson D, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca yx. J Bacteriol 189(6):2477–2486

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Medve J, Ståhlberg J, Tjerneld F (1997) Isotherms for adsorption of cellobiohydrolase i and ii from Trichoderma reesei on microcrystalline cellulose. Appl Biochem Biotechnol 66:39–56

    Article  CAS  Google Scholar 

  • Moran-Mirabal J, Corgie S, Bolewski J, Smith H, Cipriany B, Craighead H, Walker L (2009) Labeling and purification of cellulose-binding proteins for high resolution fluorescence applications. Anal Chem 81:7981–7987

    Article  CAS  Google Scholar 

  • Moran-Mirabal JM, Santhanam N, Corgie SC, Craighead HG, Walker LP (2008) Immobilization of cellulose fibrils on solid substrates for cellulose-binding studies through quantitative fluorescence microscopy. Biotechnol Bioeng 101(6):1129–1141

    Article  CAS  Google Scholar 

  • Oliveira OV, Freitas LCG, Straatsma TP, Lins RD (2008) Interaction between the cbm of cel9a from Thermobifida fusca and cellulose fibers. J Mol Recognit 22(1):38–45

    Article  Google Scholar 

  • Ooshima H, Sakata M, Harano Y (1983) Adsorption of cellulase from trichoderma viride on cellulose. Biotechnol Bioeng 25(12):3103–3114

    Article  CAS  Google Scholar 

  • Roughton FJW (1959) Diffusion and simultaneous chemical reaction velocity in haemoglobin solutions and red cell suspensions. Prog Biophys Biophys Chem 9:55–104

    Google Scholar 

  • Saxena IM, Brown R (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  Google Scholar 

  • Ståhlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290

    Article  Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Borafloat wafers were micro-patterned at the Cornell Nanoscale Science and Technology Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). This research was funded by Department Of Energy Contract GO18084. This research made use of the Biofuel Research Laboratories at Cornell University, which was funded by the New York State Foundation for Science, Technology and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold G. Craighead.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (388 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, P., Moran-Mirabal, J.M., Luterbacher, J.S. et al. Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy. Cellulose 18, 749–758 (2011). https://doi.org/10.1007/s10570-011-9506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9506-2

Keywords

Navigation