Skip to main content
Log in

High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr3) perovskite nanocrystals triple junction

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A high-performance and stable hybrid photodetector (PD) based on a monolayer MoS2/NH2 GQDs/CsPbBr3 triple junction is demonstrated in this work. The NH2 GQDs was introduced between the monolayer MoS2 and CsPbBr3 to enhance carrier transport and separation process, and optical absorption in the triple junction. The MoS2/NH2 GQDs/CsPbBr3 triple junction was characterized with several techniques. The ultraviolet–visible (UV–vis) and photoluminescence (PL) spectrometers reveal that the absorption and emission of the triple junction have significantly enhanced compared with that of the MoS2/CsPbBr3 bilayer junction, without the NH2 GQDs. In addition, the temperature-dependent photoluminescence (TDPL) confirms that the generated excitons in the hybrid triple structure tend to separate more easily during the device operation process. The hybrid photodetector shows a responsivity (R = 9.39 A/W), specific detectivity (D* = 3.32 × 1012 J), and external quantum efficiency (EQE = 791%). Moreover, the performance of the hybrid photodetector not only outdo the performance of reported PDs based on 2D material (2DM)/perovskite and 2DM/2DM bilayer heterostructure, but also performance of PDs based on 2DM/2DM/2DM and silicon/2DM/2DM triple layer heterostructure. The enhanced performance of the hybrid PD was due to the excellent alignment between the MoS2, NH2 GQDs, and CsPbBr3, which enabled the triple junction to reduce recombination process and increase photon-absorption rate. These results pave the way for incorporating the NH2 GQDs with 2DM and perovskite to fabricate low-cost and high-performance optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bera S, Pradhan N (2020) Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications. ACS Energy Lett 5:2858–2872. https://doi.org/10.1021/ACSENERGYLETT.0C01449/ASSET/IMAGES/LARGE/NZ0C01449_0009.JPEG

    Article  CAS  Google Scholar 

  2. Wang H, Ma J, Li D (2021) Two-dimensional hybrid perovskite-based van der Waals heterostructures. J Phys Chem Lett 12:8178–8187. https://doi.org/10.1021/ACS.JPCLETT.1C02290/ASSET/IMAGES/LARGE/JZ1C02290_0006.JPEG

    Article  CAS  Google Scholar 

  3. Shi E, Gao Y, Finkenauer BP, Akriti A, Coffey AH, Dou L (2018) Two-dimensional halide perovskite nanomaterials and heterostructures. Chem Soc Rev 47:6046–6072. https://doi.org/10.1039/C7CS00886D

    Article  CAS  Google Scholar 

  4. Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D (2021) Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci Appl 1(10):1–21. https://doi.org/10.1038/s41377-021-00551-4

  5. Zhang Z, Wang S, Liu X, Chen Y, Su C, Tang Z, Li Y, Xing G (2021) Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods 5:2000937. https://doi.org/10.1002/SMTD.202000937

    Article  CAS  Google Scholar 

  6. Khan S, Khan A, Azadmanjiri J, Roy PK, Děkanovský L, Sofer Z, Numan A (2022) 2D heterostructures for highly efficient photodetectors: from advanced synthesis to characterizations, mechanisms, and device applications. Adv Photonics Res 3:2100342. https://doi.org/10.1002/ADPR.202100342

    Article  CAS  Google Scholar 

  7. Zhou H, Lai H, Sun X, Zhang N, Wang Y, Liu P, Zhou Y, Xie W (2022) Van der Waals MoS2/two-dimensional perovskite heterostructure for sensitive and ultrafast sub-band-gap photodetection. ACS Appl Mater Interfaces 14:3356–3362. https://doi.org/10.1021/ACSAMI.1C15861/ASSET/IMAGES/LARGE/AM1C15861_0006.JPEG

    Article  CAS  Google Scholar 

  8. Maggini L, Ferreira RR (2021) 2D material hybrid heterostructures: achievements and challenges towards high throughput fabrication. J Mater Chem C Mater 9:15721–15734. https://doi.org/10.1039/D1TC04253J

    Article  CAS  Google Scholar 

  9. Dutt VGV, Akhil S, Singh R, Palabathuni M, Mishra N (2022) Year-long stability and near-unity photoluminescence quantum yield of CsPbBr 3 perovskite nanocrystals by benzoic acid post-treatment. J Phys Chem C 126:9502–9508. https://doi.org/10.1021/ACS.JPCC.2C01467/ASSET/IMAGES/LARGE/JP2C01467_0007.JPEG

    Article  CAS  Google Scholar 

  10. Dutt VGV, Akhil S, Singh R, Palabathuni M, Mishra N (2022) High-quality CsPbX3 (X = Cl, Br, or I) perovskite nanocrystals using ascorbic acid post-treatment: implications for light-emitting applications. ACS Appl Nano Mater 5:5972–5982. https://doi.org/10.1021/ACSANM.1C04312/ASSET/IMAGES/LARGE/AN1C04312_0009.JPEG

    Article  CAS  Google Scholar 

  11. Dutt VGV, Akhil S, Mishra N (2020) Surface passivation strategies for improving photoluminescence and stability of cesium lead halide perovskite nanocrystals. ChemNanoMat 6:1730–1742. https://doi.org/10.1002/CNMA.202000495

    Article  CAS  Google Scholar 

  12. Dutt VGV, Akhil S, Mishra N (2021) Enhancement of photoluminescence and the stability of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals with phthalimide passivation. Nanoscale 13:14442–14449. https://doi.org/10.1039/D1NR03916D

    Article  CAS  Google Scholar 

  13. Akhil S, Dutt VGV, Singh R, Mishra N (2022) Post-synthesis treatment with lead bromide for obtaining near-unity photoluminescence quantum yield and ultra-stable amine-free CsPbBr 3 perovskite nanocrystals. J Phys Chem C 126:10742–10751. https://doi.org/10.1021/ACS.JPCC.2C02379/ASSET/IMAGES/LARGE/JP2C02379_0010.JPEG

    Article  CAS  Google Scholar 

  14. Hassan MS, Basera P, Bera S, Mittal M, Ray SK, Bhattacharya S, Sapra S (2020) Enhanced photocurrent owing to shuttling of charge carriers across 4-aminothiophenol-functionalized MoSe2-CsPbBr 3 nanohybrids. ACS Appl Mater Interfaces 12:7317–7325. https://doi.org/10.1021/ACSAMI.9B20050/ASSET/IMAGES/LARGE/AM9B20050_0001.JPEG

    Article  CAS  Google Scholar 

  15. Fu Q, Wang X, Liu F, Dong Y, Liu Z, Zheng S, Chaturvedi A, Zhou J, Hu P, Zhu Z, Bo F, Long Y, Liu Z, Fu Q, Chaturvedi A, Zhou J, Long Y, Liu Z, Wang X, Dong Y, Liu F, Zheng S, Hu P, Zhu Z, Bo F (2019) Ultrathin Ruddlesden-Popper perovskite heterojunction for sensitive photodetection. Small 15:1902890. https://doi.org/10.1002/SMLL.201902890

    Article  Google Scholar 

  16. Zhang ZX, Long-Hui Z, Tong XW, Gao Y, Xie C, Tsang YH, Luo LB, Wu YC (2018) Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J Phys Chem Lett 9:1185–1194. https://doi.org/10.1021/ACS.JPCLETT.8B00266/ASSET/IMAGES/LARGE/JZ-2018-00266S_0006.JPEG

    Article  CAS  Google Scholar 

  17. Lee Y, Kwon J, Hwang E, Ra CH, Yoo WJ, Ahn JH, Park JH, Cho JH (2015) High-performance perovskite–graphene hybrid photodetector. Adv Mater 27:41–46. https://doi.org/10.1002/ADMA.201402271

  18. Song X, Liu X, Yu D, Huo C, Ji J, Li X, Zhang S, Zou Y, Zhu G, Wang Y, Wu M, Xie A, Zeng H (2018) Boosting two-dimensional MoS2/CsPbBr 3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces 10:2801–2809. https://doi.org/10.1021/ACSAMI.7B14745/ASSET/IMAGES/LARGE/AM-2017-147452_0007.JPEG

    Article  CAS  Google Scholar 

  19. Ma C, Shi Y, Hu W, Chiu M-H, Liu Z, Bera A, Li F, Wang H, Li L-J, Wu T, Ma C, Shi Y, Hu W, Chiu M, Liu Z, Bera A, Li F, Wang H, Li L, Wu T (2016) Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater 28:3683–3689. https://doi.org/10.1002/ADMA.201600069

    Article  CAS  Google Scholar 

  20. Wang Y, Fullon R, Acerce M, Petoukhoff CE, Yang J, Chen C, Du S, Lai SK, Lau SP, Voiry D, O'Carroll D (2017) Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv Mater 29:1603995. https://doi.org/10.1002/ADMA.201603995

  21. Lian M, Sun J, Jiang D, Xu M, Wu Z, Xu BB, Algadi H, Huang M, Guo Z (2022) Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. Nanotechnol 34:025401. https://doi.org/10.1088/1361-6528/AC97F1

  22. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu BB (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/J.JMST.2022.10.007

  23. Algadi H, Mahata C, Kim S, Dalapati GK (2020) Improvement of photoresponse properties of self-powered ITO/InP Schottky junction photodetector by interfacial ZnO passivation. J Electron Mater 4(50):1800–1806. https://doi.org/10.1007/S11664-020-08565-1

  24. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al‐Sayari S, Kim DE, Lee T (2015) Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Funct Mater 25:3105–3105. https://doi.org/10.1002/ADFM.201570139

  25. Lee S, Lee S, Kim D, Seo J, Mahata C, Hwang H, Algardi H, Al-Sayari S, Chae Y (2014) Electrostatically-induced trajectory switching system on a multi-inlet-multi-outlet superhydrophobic droplet guiding track. RSC Adv 5:5754–5761. https://doi.org/10.1039/C4RA13014F

    Article  CAS  Google Scholar 

  26. Cai J, Murugadoss V, Jiang J, Gao X, Lin Z, Huang M, Guo J, Alsareii SA, Algadi H, Kathiresan M (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compo Hybr Mater 5(2):641–650. https://doi.org/10.1007/S42114-022-00473-8

  27. Chen A, Wang C, Ali OA, Mahmoud SF, Shi Y, Ji Y, Algadi H, El-Bahy SM, Huang M, Guo Z, Cui D (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos Part A Appl Sci Manuf 163:107174. https://doi.org/10.1016/J.COMPOSITESA.2022.107174

  28. Bi J, Liu Y, Gao F, Ge S, E-lBahy ZM, Huang M, Mersal GA, Alhadhrami A, Ibrahim MM, Xu BB, Algadi H (2022) Improving water resistance and mechanical properties of waterborne acrylic resin modified by 3,3′,5,5′-tetramethyl-4,4′-biphenyl diglycidyl ether. Surf Interfaces  35:102426. https://doi.org/10.1016/J.SURFIN.2022.102426

  29. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah RA, Abo-Dief HM, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/J.JMST.2022.07.041

    Article  Google Scholar 

  30. Zhang Y, Zheng J, Nan J, Gai C, Shao Q, Murugadoss V, Maganti S, Naik N, Algadi H, Huang M, Xu BB (2023) Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications. Particuology 74:141–155. https://doi.org/10.1016/J.PARTIC.2022.05.010

  31. Song S, Qiao J, Shen M, Zhang G, Feng F, Somekh MG (2022) Ultrasensitive photodetectors based on graphene quantum dot-InSe mixed-dimensional van der Waals heterostructures. J Mater Chem C Mater 10:18174–18181. https://doi.org/10.1039/D2TC03395J

    Article  CAS  Google Scholar 

  32. Nguyen DA, Oh HM, Duong NT, Bang S, Yoon SJ, Jeong MS (2018) Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots. ACS Appl Mater Interfaces 10:10322–10329. https://doi.org/10.1021/ACSAMI.7B18419/ASSET/IMAGES/LARGE/AM-2017-18419F_0006.JPEG

    Article  CAS  Google Scholar 

  33. Chen C, Qiao H, Lin S, Man Luk C, Liu Y, Xu Z, Song J, Xue Y, Li D, Yuan J, Yu W (2015) Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci Rep 5(1):1–9. https://doi.org/10.1038/srep11830

  34. Litvin AP, Zhang X, Ushakova EV, Rogach AL (2021) Carbon nanoparticles as versatile auxiliary components of perovskite-based optoelectronic devices. Adv Funct Mater 31:2010768. https://doi.org/10.1002/ADFM.202010768

  35. Ghosh D, Sarkar K, Devi P, Kim KH, Kumar P (2021) Current and future perspectives of carbon and graphene quantum dots: from synthesis to strategy for building optoelectronic and energy devices. Renewable Sustainable Energy Rev 135:110391. https://doi.org/10.1016/J.RSER.2020.110391

  36. Algadi H, Albargi H, Umar A, Shkir M (2021) Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector. Adv Compo Hybr Mater 4(4):1354–1366. https://doi.org/10.1007/S42114-021-00355-5

  37. Algadi H, Mahata C, Sahoo B, Kim M, Koh WG, Lee T (2020) Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure. Org Electron 76:105444. https://doi.org/10.1016/J.ORGEL.2019.105444

  38. Algadi H, Umar A, Albargi H, Alsuwian T, Baskoutas S (2021) Carbon nanodots as a potential transport layer for boosting performance of all-inorganic perovskite nanocrystals-based photodetector. Crystals 11:717. https://doi.org/10.3390/CRYST11060717

  39. Zhu Q, Zhao Y, Miao B, Abo-Dief HM, Qu M, Pashameah RA, Xu BB, Huang M, Algadi H, Liu X, Guo Z (2022) Hydrothermally synthesized ZnO-RGO-PPy for water-borne epoxy nanocomposite coating with anticorrosive reinforcement. Prog Org Coat 172:107153. https://doi.org/10.1016/J.PORGCOAT.2022.107153

  40. Zhao Z, Zhao R, Bai P, Du W, Guan R, Tie D, Naik N, Huang M, Guo Z (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: phases distribution, interfacial microstructure, and property analysis. J Alloys Compd 902:163484. https://doi.org/10.1016/J.JALLCOM.2021.163484

  41. Zhang Z, Liu M, Ibrahim MM, Wu H, Wu Y, Li Y, Mersal GAM, el Azab IH, El-Bahy SM, Huang M, Jiang Y, Liang G, Xie P, Liu C (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066. https://doi.org/10.1007/S42114-022-00486-3/METRICS

    Article  CAS  Google Scholar 

  42. Xiao X, Li J, Wu J, Lu D, Tang C (2019) Negative photoconductivity observed in polycrystalline monolayer molybdenum disulfide prepared by chemical vapor deposition. Appl Phys A Mater Sci Process 125:1–7. https://doi.org/10.1007/S00339-019-3054-2/FIGURES/5

    Article  CAS  Google Scholar 

  43. Luo R, Xu WW, Zhang Y, Wang Z, Wang X, Gao Y, Liu P, Chen M (2020) Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nat Commun 11(1):1–12. https://doi.org/10.1038/s41467-020-14753-8

  44. Zheng B, Chen Y (2017) Controllable growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. IOP Conf Ser Mater Sci Eng 274:012085. https://doi.org/10.1088/1757-899X/274/1/012085

  45. Tetsuka H, Nagoya A, Fukusumi T, Matsui T (2016) Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater 28:4632–4638. https://doi.org/10.1002/ADMA.201600058

    Article  CAS  Google Scholar 

  46. Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H (2016) Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 12:5622–5632. https://doi.org/10.1002/SMLL.201602366

    Article  CAS  Google Scholar 

  47. Chen X, Hu H, Xia Z, Gao W, Gou W, Qu Y, Ma Y (2017) CsPbBr 3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. J Mater Chem C Mater 5:309–313. https://doi.org/10.1039/C6TC04136A

    Article  CAS  Google Scholar 

  48. Akhil S, Dutt VGV, Singh R, Mishra N (2021) Surface-state-mediated interfacial hole transfer dynamics between CsPbBr 3 perovskite nanocrystals and phenothiazine redox couple. J Phys Chem C 125:22133–22141. https://doi.org/10.1021/ACS.JPCC.1C07129/SUPPL_FILE/JP1C07129_SI_001.PDF

    Article  CAS  Google Scholar 

  49. Akhil S, Dutt VGV, Mishra N (2021) Surface modification for improving the photoredox activity of CsPbBr 3 nanocrystals. Nanoscale Adv 3:2547–2553. https://doi.org/10.1039/D1NA00091H

    Article  CAS  Google Scholar 

  50. Palabathuni M, Akhil S, Singh R, Mishra N (2022) Charge transfer in photoexcited cesium-lead halide perovskite nanocrystals: review of materials and applications. ACS Appl Nano Mater 5:10097–10117. https://doi.org/10.1021/ACSANM.2C01550/ASSET/IMAGES/MEDIUM/AN2C01550_0016.GIF

    Article  CAS  Google Scholar 

  51. Li C, Han C, Zhang Y, Zang Z, Wang M, Tang X, Du J (2017) Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr 3films. Sol Energy Mater Sol Cells 172:341–346. https://doi.org/10.1016/j.solmat.2017.08.014

    Article  CAS  Google Scholar 

  52. Gong M, Sakidja R, Goul R, Ewing D, Casper M, Stramel A, Elliot A, Wu JZ (2019) High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano 13:1772–1783. https://doi.org/10.1021/acsnano.8b07850

    Article  CAS  Google Scholar 

  53. Shen Y, Yu D, Wang X, Huo C, Wu Y, Zhu Z, Zeng H (2018) Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer. Nanotechnol 29. https://doi.org/10.1088/1361-6528/aaa456

  54. Gao C, Li X, Zhu X, Chen L, Wang Y, Teng F, Zhang Z, Duan H, Xie E (2014) High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2-TiO2 core-shell electrodes. J Alloys Compd 616. https://doi.org/10.1016/j.jallcom.2014.07.171

  55. Reddy YAK, Ajitha B, Sreedhar A, Varrla E (2019) Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films. Appl Surf Sci 494:575–582. https://doi.org/10.1016/J.APSUSC.2019.07.124

    Article  CAS  Google Scholar 

  56. Liu H, Zhang X, Zhang L, Yin Z, Wang D, Meng J, Jiang Q, Wang Y, You J (2017) A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. J Mater Chem C Mater 5:6115–6122. https://doi.org/10.1039/C7TC01998J

    Article  CAS  Google Scholar 

  57. Dong Y, Zou Y, Song J, Song X, Zeng H (2017) Recent progress of metal halide perovskite photodetectors. J Mater Chem C Mater 5:11369–11394. https://doi.org/10.1039/C7TC03612D

    Article  CAS  Google Scholar 

  58. Zhou L, Yu K, Yang F, Cong H, Wang N, Zheng J, Zuo Y, Li C, Cheng B, Wang Q (2017) Insight into the effect of ligand-exchange on colloidal CsPbBr 3 perovskite quantum dot/mesoporous-TiO2 composite-based photodetectors: much faster electron injection. J Mater Chem C Mater 5:6224–6233. https://doi.org/10.1039/c7tc01611e

    Article  CAS  Google Scholar 

  59. Zhou L, Yu K, Yang F, Zheng J, Zuo Y, Li C, Cheng B, Wang Q (2017) All-inorganic perovskite quantum dot/mesoporous TiO2composite-based photodetectors with enhanced performance. Dalton Trans 46:1766–1769. https://doi.org/10.1039/c6dt04758k

    Article  CAS  Google Scholar 

  60. Yi X, Ren Z, Chen N, Li C, Zhong X, Yang S, Wang J (2017) TiO2 nanocrystal/perovskite bilayer for high-performance photodetectors. Adv Electron Mater 3. https://doi.org/10.1002/aelm.201700251

  61. Liu H, Zhang X, Zhang L, Yin Z, Wang D, Meng J, Jiang Q, Wang Y, You J (2017) A high-performance photodetector based on an inorganic perovskite-ZnO heterostructure †. J Mater Chem C 5:6115. https://doi.org/10.1039/c7tc01998j

  62. Kim CO, Hwang SW, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Kim JH, Lee KW, Choi SH, Hwang E (2014) High-performance graphene-quantum-dot photodetectors. Sci Rep 4:4–9. https://doi.org/10.1038/srep05603

    Article  CAS  Google Scholar 

  63. Massicotte M, Schmidt P, Vialla F, Schädler KG, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij KJ, Koppens FH (2016) Photo-thermionic effect in vertical graphene heterostructures. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms12174

  64. Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W, Lv Y, Yao S, Lu M, Chen Y, Ni Z, You Y, Zhang X, Qin S, Shi Y, Hu W, Xing D, Miao F (2016) Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett 16:2254–2259. https://doi.org/10.1021/ACS.NANOLETT.5B04538/ASSET/IMAGES/LARGE/NL-2015-04538F_0005.JPEG

    Article  CAS  Google Scholar 

  65. Kim W, Arpiainen S, Xue H, Soikkeli M, Qi M, Sun Z, Lipsanen H, Chaves FA, Jiménez D, Prunnila M (2018) Photoresponse of graphene-gated graphene-GaSe heterojunction devices. ACS Appl Nano Mater 1:3895–3902. https://doi.org/10.1021/ACSANM.8B00684/ASSET/IMAGES/LARGE/AN-2018-00684T_0004.JPEG

    Article  CAS  Google Scholar 

  66. Ma P, Flöry N, Salamin Y, Baeuerle B, Emboras A, Josten A, Taniguchi T, Watanabe K, Novotny L, Leuthold J (2018) Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5:1846–1852. https://doi.org/10.1021/ACSPHOTONICS.8B00068/ASSET/IMAGES/LARGE/PH-2018-00068E_0004.JPEG

    Article  CAS  Google Scholar 

  67. Lu T, Ma Z, Du C, Fang Y, Wu H, Jiang Y, Wang L, Dai L, Jia H, Liu W, Chen H (2014) Temperature-dependent photoluminescence in light-emitting diodes. Sci Rep 4:1–7. https://doi.org/10.1038/srep06131

  68. Yuan X, Jing P, Li J, Wei M, Hua J, Zhao J, Tian L, Li J (2016) Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv 6:78311–78316. https://doi.org/10.1039/C6RA17008K

    Article  CAS  Google Scholar 

  69. Liu M, Wu H, Wu Y, Xie P, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5:2021–2030. https://doi.org/10.1007/S42114-022-00541-Z/METRICS

    Article  CAS  Google Scholar 

  70. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TA, Huang M, Meng S, Liang G (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compo Hybr Mater 5(2):679–695. https://doi.org/10.1007/S42114-022-00479-2

  71. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/S42114-020-00202-Z/METRICS

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University, Najran, Kingdom of Saudi Arabia, for funding under the Research Collaboration funding program grant no. NU/NRP/SERC/11/29.

Author information

Authors and Affiliations

Authors

Contributions

HA contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HA, JR, and HL. TD conducted data analysis and discussion. The manuscript was written by HA and TD. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassan Algadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1795 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algadi, H., Das, T., Ren, J. et al. High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr3) perovskite nanocrystals triple junction. Adv Compos Hybrid Mater 6, 56 (2023). https://doi.org/10.1007/s42114-023-00634-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00634-3

Keywords

Navigation