Skip to main content
Log in

A high-performance self-powered photodetector based on solution-processed nitrogen-doped graphene quantum dots/all-inorganic perovskite heterostructures

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, a self-powered and high-performance vertical type photodetector based on solution-processed nitrogen-doped graphene quantum dots and all-inorganic perovskite nanocrystals heterostructure is achieved. The vertical type NGQDs/CsPbBr3 heterojunction photodetector was fabricated using two steps of standard lithography process and drop-casting method. The vertical type NGQDs/CsPbBr3 photodetector (VTPD) exhibited a nonlinear I–V curve with an extremely low dark current of 0.38 nA and 0.29 nA at forward and reverse bias voltage of 3 V, and − 3 V, respectively. Moreover, the vertical type NGQDs/CsPbBr3 photodetector exhibited superior figure of merits (high-performance) with a light current (257.71 nA), an on/off ratio (670), responsivity (R = 3.21 A/W), specific detectivity (D* = 2.9 × 1012 J), and an external quantum efficiency (EQE = 270%) under illumination of light source with a wavelength of 520 nm and power intensity of 0.8 mW/cm2 at bias voltage of 3 V. In addition, the vertical type NGQDs/CsPbBr3 photodetector is confirmed to operate without an external bias voltage demonstrating the obvious photovoltaic characteristics of the device at 0 V. The performance of vertical type NGQDs/CsPbBr3 photodetector (VTPD) is not only surpass the performance of planar type NGQDs/CsPbBr3 photodetector (PTPD) fabricated in this work but also the performance of recently reported self-powered PDs based on carbon/perovskite, and perovskite/perovskite heterostructure. These results pave the way for exploiting solution-processed NGQDs/CsPbBr3 heterojunction to fabricate low-cost, self-powered, and high-performance optoelectronics such as solar cells, light emitting diodes, lasers, and photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu W, Li F, Huang T, Li W, Wu T (2023) Go beyond the limit: rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications. The Innovation 4:100363. https://doi.org/10.1016/J.XINN.2022.100363

  2. Li C, Li J, Li Z, Zhang H, Dang Y, Kong K (2021) High-performance photodetectors based on nanostructured perovskites. Nanomaterials 11:1038. https://doi.org/10.3390/NANO11041038

  3. Ru Y, Zhang B, Yong X, Sui L, Yu J, Song H, Lu S (2023) Full-color circularly polarized luminescence of CsPbX3 nanocrystals triggered by chiral carbon dots. Adv Mater 35:2207265. https://doi.org/10.1002/ADMA.202207265

    Article  CAS  Google Scholar 

  4. Dong GH, Hao LJ, Zhang WZ, Chai DF, Zhao M, Lang K (2022) Recent progress on the application of carbon quantum dots nano-materials in lead halogen perovskite solar photoelectric devices. Chinese J Appl Chem 39:707. https://doi.org/10.19894/J.ISSN.1000-0518.210133

  5. Wang Z, Yang M, Xie X, Yu C, Jiang Q, Huang M, Algadi H, Guo Z, Zhang H (2022) Applications of machine learning in perovskite materials. Adv Compos Hybrid Mater 5:2700–2720. https://doi.org/10.1007/S42114-022-00560-W/METRICS

    Article  Google Scholar 

  6. Gu H, Chen SC, Zheng Q (2021) Emerging perovskite materials with different nanostructures for photodetectors. Adv Opt Mater 9:2001637. https://doi.org/10.1002/ADOM.202001637

    Article  CAS  Google Scholar 

  7. Wang HP, Li S, Liu X, Shi Z, Fang X, He JH (2021) Low-dimensional metal halide perovskite photodetectors. Adv Mater 33:2003309. https://doi.org/10.1002/ADMA.202003309

    Article  CAS  Google Scholar 

  8. Algadi H, Albargi H, Umar A, Shkir M (2021) Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector. Adv Compos Hybrid Mater 4(44):1354–1366. https://doi.org/10.1007/S42114-021-00355-5

  9. Feng S, Zhai F, Su H, Sridhar D, Algadi H, Xu B Bin, Pashameah RA, Alzahrani E, Abo-Dief HM, Ma Y, Li T, Guo Z (2023) Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater Today Phys 30:100950. https://doi.org/10.1016/J.MTPHYS.2022.100950

  10. Li X, Ren J, Sridhar D, Bin XuB, Algadi H, El-Bahy ZM, Ma Y, Li T, Guo Z (2023) Progress of layered double hydroxide-based materials for supercapacitors. Mater Chem Front. https://doi.org/10.1039/D2QM01346K

    Article  Google Scholar 

  11. Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5(25):606–626. https://doi.org/10.1007/S42114-022-00500-8

  12. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(44):906–924. https://doi.org/10.1007/S42114-021-00358-2

  13. Ma Y, Hou C, Kimura H, Xie X, Jiang H, Sun X, Yang X, Zhang Y, Du W (2023) Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater 6:1–17. https://doi.org/10.1007/S42114-023-00636-1/METRICS

    Article  Google Scholar 

  14. Ping D, Yi F, Zhang G, Wu S, Fang S, Hu K, Bin XuB, Ren J, Guo Z (2023) NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/J.JMST.2022.10.006

    Article  Google Scholar 

  15. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160. https://doi.org/10.1016/J.JMST.2022.03.012

    Article  Google Scholar 

  16. Zhang Y, Liu L, Zhao L, Hou C, Huang M, Algadi H, Li D, Xia Q, Wang J, Zhou Z, Han X, Long Y, Li Y, Zhang Z, Liu Y (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater 5:2601–2610. https://doi.org/10.1007/S42114-022-00535-X/METRICS

    Article  CAS  Google Scholar 

  17. Shi E, Gao Y, Finkenauer BP, Akriti A, Coffey AH, Dou L (2018) Two-dimensional halide perovskite nanomaterials and heterostructures. Chem Soc Rev 47:6046–6072. https://doi.org/10.1039/C7CS00886D

    Article  CAS  Google Scholar 

  18. García De Arquer FP, Armin A, Meredith P, Sargent EH (2017) Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2(32):1–17. https://doi.org/10.1038/natrevmats.2016.100

  19. Shen Y, Yang W, Hu F, Zheng X, Zheng Y, Liu H, Algadi H, Chen K (2023) Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation. Adv Compos Hybrid Mater 6:1–11. https://doi.org/10.1007/S42114-022-00610-3/METRICS

    Article  Google Scholar 

  20. Yu X, Wu Z, Weng L, Jiang D, Algadi H, Qin Z, Guo Z, Xu BB (2023) Flexible strain sensor enabled by carbon nanotubes-decorated electrospun TPU membrane for human motion monitoring. Adv Mater Interf 2202292. https://doi.org/10.1002/ADMI.202202292

  21. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Bin XuB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/J.JMST.2022.12.003

    Article  Google Scholar 

  22. Ghosh D, Sarkar K, Devi P, Kim KH, Kumar P (2021) Current and future perspectives of carbon and graphene quantum dots: from synthesis to strategy for building optoelectronic and energy devices. Renew Sustain Energ Rev 135:110391. https://doi.org/10.1016/J.RSER.2020.110391

  23. Litvin AP, Zhang X, Ushakova EV, Rogach AL (2021) Carbon nanoparticles as versatile auxiliary components of perovskite-based optoelectronic devices. Adv Funct Mater 31:2010768. https://doi.org/10.1002/ADFM.202010768

    Article  CAS  Google Scholar 

  24. Wu Z, Wang X, Annamareddy SHK, Gao S, Xu Q, Algadi H, Sridhar D, Wasnik P, Xu B Bin, Weng L, Guo Z (2023) Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@multi-walled carbon nanotubes and boron nitride. https://www.espublisher.com/. https://doi.org/10.30919/ESMM5F847

  25. Mu Y, Wang L, Zhang R, Pashameah RA, Alzahrani E, Li Z, Alanazi AK, Algadi H, Huang M, Guo Z, Wan T, Wei H (2023) Rapid and facile fabrication of hierarchically porous graphene aerogel for oil-water separation and piezoresistive sensing applications. Appl Surf Sci 613:155982. https://doi.org/10.1016/J.APSUSC.2022.155982

  26. Liang T, Yang X, Liu B, Song R, Xiao F, Yang Y, Wang D, Dong M, Ren J, Bin XuB, Algadi H, Yang Y (2023) Ammonium perchlorate@graphene oxide/Cu-MOF composites for efficiently catalyzing the thermal decomposition of ammonium perchlorate. Adv Compos Hybrid Mater 6:1–12. https://doi.org/10.1007/S42114-023-00651-2/METRICS

    Article  Google Scholar 

  27. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678. https://doi.org/10.1016/J.CARBPOL.2023.120678

  28. Bi X, Li M, Zhou G, Liu C, Huang R, Shi Y, Bin XuB, Guo Z, Fan W, Algadi H, Ge S (2023) High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res 2023:1–14. https://doi.org/10.1007/S12274-023-5586-1

    Article  Google Scholar 

  29. Xu Z, Zhou X, Li X, Li H, Algadi H, Zhang P (2023) Buried-in interface with two-terminal functional groups for perovskite-based photovoltaic solar cells. Adv Compos Hybrid Mater 6:1–10. https://doi.org/10.1007/S42114-023-00646-Z/METRICS

    Article  CAS  Google Scholar 

  30. Wang W, Liu Y, Li S, Dong K, Wang S, Cai P, Hou L, Dou H, Liang D, Algadi H, Fan W (2023) Lead-free and wearing comfort 3D composite fiber-needled fabric for highly efficient X-ray shielding. Adv Compos Hybrid Mater 6(26):1–11. https://doi.org/10.1007/S42114-023-00642-3

  31. Zeng J, Xie W, Zhou H, Zhao T, Bin XuB, Jiang Q, Algadi H, Zhou Z, Gu H (2023) Nitrogen-doped graphite-like carbon derived from phthalonitrile resin with controllable negative magnetoresistance and negative permittivity. Adv Compos Hybrid Mater 6:1–12. https://doi.org/10.1007/S42114-023-00639-Y/METRICS

    Article  Google Scholar 

  32. Algadi H, Ren J, Alqarni A (2023) Solution-processed nitrogen-doped graphene quantum dots/perovskite composite heterojunction for boosting performance of anatase titanium dioxide (TiO2)-based UV photodetector. Adv Compos Hybrid Mater 6:1–15. https://doi.org/10.1007/S42114-023-00667-8/METRICS

    Article  Google Scholar 

  33. Algadi H, Mahata C, Woo J, Lee M, Kim M, Lee T (2019) Enhanced photoresponsivity of all-inorganic (CsPbBr 3) perovskite nanosheets photodetector with carbon nanodots (CDs). Electronics 8:678. https://doi.org/10.3390/ELECTRONICS8060678

  34. Zhang X, Ji C, Liu X, Wang S, Li L, Peng Y, Yao Y, Hong M, Luo J (2020) Solution-grown large-sized single-crystalline 2D/3D perovskite heterostructure for self-powered photodetection. Adv Opt Mater 8:2000311. https://doi.org/10.1002/ADOM.202000311

    Article  CAS  Google Scholar 

  35. Murali S, Madhusudanan SP, Pathak AK, Jayasankar PM, Batabyal SK (2019) Carbon assisted methylammonium lead iodide microcrystalline device for an inexpensive self-powered photodetector. Mater Lett 254:428–432. https://doi.org/10.1016/J.MATLET.2019.07.105

    Article  CAS  Google Scholar 

  36. Lian M, Sun J, Jiang D, Xu M, Wu Z, Bin Xu B, Algadi H, Huang M, Guo Z (2022) Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. Nanotechnology 34:025401. https://doi.org/10.1088/1361-6528/AC97F1

  37. Cai J, Murugadoss V, Jiang J, Gao X, Lin Z, Huang M, Guo J, Alsareii SA, Algadi H, Kathiresan M (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater 5(25):641–650. https://doi.org/10.1007/S42114-022-00473-8

  38. Zhang Y, Zheng J, Nan J, Gai C, Shao Q, Murugadoss V, Maganti S, Naik N, Algadi H, Huang M, Bin XuB, Guo Z (2023) Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications. Particuology 74:141–155. https://doi.org/10.1016/J.PARTIC.2022.05.010

    Article  CAS  Google Scholar 

  39. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah RA, Abo-Dief HM, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/J.JMST.2022.07.041

    Article  Google Scholar 

  40. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T (2015) Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics (Adv. Funct. Mater. 21/2015). Adv Funct Mater 25:3105–3105. https://doi.org/10.1002/ADFM.201570139

    Article  Google Scholar 

  41. Zhu Q, Zhao Y, Miao B, Abo-Dief HM, Qu M, Pashameah RA, Xu B Bin, Huang M, Algadi H, Liu X, Guo Z (2022) Hydrothermally synthesized ZnO-RGO-PPy for water-borne epoxy nanocomposite coating with anticorrosive reinforcement. Prog Org Coat 172:107153. https://doi.org/10.1016/J.PORGCOAT.2022.107153

  42. Chen A, Wang C, Abu Ali OA, Mahmoud SF, Shi Y, Ji Y, Algadi H, El-Bahy SM, Huang M, Guo Z, Cui D, Wei H (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos Part A Appl Sci Manuf 163:107174. https://doi.org/10.1016/J.COMPOSITESA.2022.107174

  43. Zeng LH, Chen QM, Zhang ZX, Wu D, Yuan H, Li YY, Qarony W, Lau SP, Luo LB, Tsang YH (2019) Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Advanced Science 6:1901134. https://doi.org/10.1002/ADVS.201901134

    Article  CAS  Google Scholar 

  44. Bai F, Qi J, Li F, Fang Y, Han W, Wu H, Zhang Y (2018) A high-performance self-powered photodetector based on monolayer MoS2/perovskite heterostructures. Adv Mater Interfaces 5:1701275. https://doi.org/10.1002/ADMI.201701275

    Article  Google Scholar 

  45. Algadi H, Mahata C, Sahoo B, Kim M, Koh WG, Lee T (2020) Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure. Org Electron 76:105444. https://doi.org/10.1016/J.ORGEL.2019.105444

  46. Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H (2016) Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 12:5622–5632. https://doi.org/10.1002/SMLL.201602366

    Article  CAS  Google Scholar 

  47. Tetsuka H, Nagoya A, Fukusumi T, Matsui T (2016) Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater 28:4632–4638. https://doi.org/10.1002/ADMA.201600058

    Article  CAS  Google Scholar 

  48. Nguyen DA, Oh HM, Duong NT, Bang S, Yoon SJ, Jeong MS (2018) Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots. ACS Appl Mater Interfaces 10:10322–10329. https://doi.org/10.1021/ACSAMI.7B18419/ASSET/IMAGES/LARGE/AM-2017-18419F_0006.JPEG

    Article  CAS  Google Scholar 

  49. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Bin XuB, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/J.JMST.2022.10.007

    Article  Google Scholar 

  50. Mu Q, Liu R, Kimura H, Li J, Jiang H, Zhang X, Yu Z, Sun X, Algadi H, Guo Z, Du W, Hou C (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6:1–11. https://doi.org/10.1007/S42114-022-00607-Y

    Article  Google Scholar 

  51. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/S42114-022-00556-6

    Article  CAS  Google Scholar 

  52. Bera S, Pradhan N (2020) Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications. ACS Energy Lett 5:2858–2872. https://doi.org/10.1021/ACSENERGYLETT.0C01449/ASSET/IMAGES/LARGE/NZ0C01449_0009.JPEG

    Article  CAS  Google Scholar 

  53. Algadi H, Das T, Ren J, Li H (2023) High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr 3) perovskite nanocrystals triple junction. Adv Compos Hybrid Mater 6:1–17. https://doi.org/10.1007/S42114-023-00634-3

    Article  Google Scholar 

  54. Algadi H, Umar A, Albargi H, Alsuwian T, Baskoutas S (2021) Carbon nanodots as a potential transport layer for boosting performance of all-inorganic perovskite nanocrystals-based photodetector. Crystals 11:717.https://doi.org/10.3390/CRYST11060717

  55. Palabathuni M, Akhil S, Singh R, Mishra N (2022) Charge transfer in photoexcited cesium-lead halide perovskite nanocrystals: review of materials and applications. ACS Appl Nano Mater 5:10097–10117. https://doi.org/10.1021/ACSANM.2C01550/ASSET/IMAGES/MEDIUM/AN2C01550_0016.GIF

    Article  CAS  Google Scholar 

  56. Algadi H, Mahata C, Kim S, Dalapati GK (2020) Improvement of photoresponse properties of self-powered ITO/InP Schottky junction photodetector by interfacial ZnO passivation. J Electronic Mater 50(450):1800–1806. https://doi.org/10.1007/S11664-020-08565-1

  57. Ma C, Shi Y, Hu W, Chiu M-H, Liu Z, Bera A, Li F, Wang H, Li L-J, Wu T, Ma C, Shi Y, Hu W, Chiu M, Liu Z, Bera A, Li F, Wang H, Li L, Wu T (2016) Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater 28:3683–3689. https://doi.org/10.1002/ADMA.201600069

    Article  CAS  Google Scholar 

  58. Zhou L, Yu K, Yang F, Zheng J, Zuo Y, Li C, Cheng B, Wang Q (2017) All-inorganic perovskite quantum dot/mesoporous TiO2composite-based photodetectors with enhanced performance. Dalton Trans 46:1766–1769. https://doi.org/10.1039/c6dt04758k

    Article  CAS  Google Scholar 

  59. Yi X, Ren Z, Chen N, Li C, Zhong X, Yang S, Wang J (2017) TiO2 nanocrystal/perovskite bilayer for high-performance photodetectors. Adv Electron Mater 3. https://doi.org/10.1002/aelm.201700251

  60. Liu H, Zhang X, ab, Liuqi Zhang ab, Zhigang Yin ab, Denggui Wang ab, Junhua Meng ab, Qi Jiang ab, Ye Wang ab ab, You ab J, (2017) A high-performance photodetector based on an inorganic perovskite-ZnO heterostructure. J Mater Chem C 5:6115. https://doi.org/10.1039/c7tc01998j

    Article  CAS  Google Scholar 

  61. Song X, Liu X, Yu D, Huo C, Ji J, Li X, Zhang S, Zou Y, Zhu G, Wang Y, Wu M, Xie A, Zeng H (2018) Boosting two-dimensional MoS2/CsPbBr 3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces 10:2801–2809. https://doi.org/10.1021/ACSAMI.7B14745/ASSET/IMAGES/LARGE/AM-2017-147452_0007.JPEG

    Article  CAS  Google Scholar 

  62. Lim S, Ha M, Lee Y, Ko H (2018) Large-area, solution-processed, hierarchical MAPbI3 nanoribbon arrays for self-powered flexible photodetectors. Adv Opt Mater 6:1800615. https://doi.org/10.1002/ADOM.201800615

    Article  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University, Najran, Kingdom of Saudi Arabia, for funding under the Research Collaboration funding program grant no. NU/NRP/SERC/11/29.

Author information

Authors and Affiliations

Authors

Contributions

HA contributed to the study conception and design. HA, JR, and AA performed material preparation, data collection, and analysis. JR and AA conducted data analysis and discussion. HA and JR wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassan Algadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5265 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algadi, H., Ren, J. & Alqarni, A. A high-performance self-powered photodetector based on solution-processed nitrogen-doped graphene quantum dots/all-inorganic perovskite heterostructures. Adv Compos Hybrid Mater 6, 98 (2023). https://doi.org/10.1007/s42114-023-00688-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00688-3

Keywords

Navigation