Skip to main content

Advertisement

Log in

Zeolitic imidazolate framework promoters in one-pot epoxy–amine reaction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Epoxy composites are widely used in commercial products. For industrial purposes, storage stability is one of their most important characteristics. To enable this feature, alternative promoters that are stable at a low-energy state, where they do not react, are needed. Zeolitic imidazolate frameworks (ZIFs) are organic–inorganic complexes, and they contain imidazolate linkers, which are one of the promoters in the epoxy–amine reaction. In this study, the stability of a one-pot epoxy–amine composite was improved by using ZIFs as promoters. ZIFs were synthesized using the solvothermal method, and their structure were confirmed using X-ray diffraction analysis and field-emission scanning electron microscopy. The activation energy of the ZIFs was measured using the non-isothermal method of differential scanning calorimetry, and it was calculated using the Kissinger equation. Furthermore, the storage stability of the one-pot epoxy–amine system was measured considering the viscosity change with time at constant temperature. The viscoelastic behavior of the cured sample was demonstrated using dynamic mechanical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rebizant V, Venet AS, Tournilhac F, Reydet EG, Navarro C, Pascault JP, Leibler L (2004) Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 37:8017–8027

    Article  CAS  Google Scholar 

  2. Cole KC, Hechler J-J, Noel DA (1991) A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) sulfone. Macromolecules 24:3098–3110

    Article  CAS  Google Scholar 

  3. Wegmann A (1997) Chemical resistance of waterborne epoxy/amine coatings. Prog Org Coat 32:231–239

    Article  CAS  Google Scholar 

  4. Awja F, Gilbert M, Kelly G, Fox B, Pigram PJ (2009) Adhesion of polymers. Prog Polym Sci 34:948–968

    Article  Google Scholar 

  5. Vyazovkin S, Sbirrazzuoli N (1996) Mechanism and kinetics of epoxy–amine cure studied by differential scanning calorimetry. Macromolecules 29:1867–1873

    Article  CAS  Google Scholar 

  6. Gao L, Zhang Q, Li H, Yu S, Zhong W, Sui G, Yang X (2017) Effect of epoxy monomer structure on the curing process and thermo-mechanical characteristics of tri-functional epoxy/amine systems: a methodology combining atomistic molecular simulation with experimental analyses. Polym Chem 8:2016–2027

    Article  CAS  Google Scholar 

  7. Musto P (2003) Two-dimensional FTIR spectroscopy studies on the thermal-oxidative degradation of epoxy and epoxy–bis(maleimide) networks. Macromolecules 36:3210–3221

    Article  CAS  Google Scholar 

  8. Konuray AO, Fernández-Francos X, Ramis X (2017) Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polym Chem 8:5934–5947

    Article  CAS  Google Scholar 

  9. Yang T, Zhang C, Zhang J, Cheng J (2014) The influence of tertiary amine accelerators on the curing behaviors of epoxy/anhydride systems. Thermochim Acta 577:11–16

    Article  CAS  Google Scholar 

  10. Hesabi M, Salimi A, Beheshty MH (2017) Effect of tertiary amine accelerators with different substituents on curing kinetics and reactivity of epoxy/dicyandiamide system. Polym Test 59:344–354

    Article  CAS  Google Scholar 

  11. LaLiberte BR, Bornstein J, Sacher RE (1983) Cure behavior of an epoxy resin-dicyandiamide system accelerated by monuron. Ind Eng Chem Prod Res Dev 22:261–262

    Article  CAS  Google Scholar 

  12. Park WH, Lee JK, Kwon KJ (1996) Cure behavior of an epoxy-anhydride-imidazole system. Polym J 28:407–411

    Article  CAS  Google Scholar 

  13. Heise MS, Martin GC (1989) Curing mechanism and thermal properties of epoxy-imidazole systems. Macromolecules 22:99–104

    Article  CAS  Google Scholar 

  14. Rahmathulah MA, Jeyarajasingam MA, Merritt B, VanLandingham M, McKnight SH, Palmese GR (2009) Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins. Macromolecules 42:3219–3221

    Article  Google Scholar 

  15. Suzuki K, Matsu-ura N, Horii H, Sugita Y, Sanda F, Endo T (2003) One-pot curing system of epoxy resin imines initiated with water. J Appl Polym Sci 88:878–882

    Article  CAS  Google Scholar 

  16. Ham YR, Lee DH, Kim SH, Shin YJ, Yang M, Shin JS (2010) Microencapsulation of imidazole curing agent for epoxy resin. J Ind Eng Chem 16:728–733

    Article  CAS  Google Scholar 

  17. Xu J, Liu J, Li Z, Wang X, Wang Z (2019) Synthesis, structure and properties of Pd@MOF-808. J Mater Sci 54:12911–12924. https://doi.org/10.1007/s10853-019-03786-0

    Article  CAS  Google Scholar 

  18. Kim H, Moon H-S, Sohail M, Yoon Y-N, Shah SFA, Yim K, Moon J-H, Park YC (2019) Synthesis of cyclic carbonate by CO2 fixation to epoxides using interpenetrated MOF-5/n-Bu4NBr. J Mater Sci 54:11796–11803. https://doi.org/10.1007/s10853-019-03702-6

    Article  CAS  Google Scholar 

  19. Wang S, Ye B, An C, Wang J, Li Q (2019) Synergistic effects between Cu metal-organic framework (Cu-MOF) and carbon nanomaterials for the catalyzation of the thermal decomposition of ammonium perchlorate (AP). J Mater Sci 54:4928–4941. https://doi.org/10.1007/s10853-018-03219-4

    Article  CAS  Google Scholar 

  20. Yaghi MO, O’Keeffe MN, Ockwig W, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  21. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  22. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  Google Scholar 

  23. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  24. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  25. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  CAS  Google Scholar 

  26. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191

    Article  CAS  Google Scholar 

  27. Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132:76–78

    Article  CAS  Google Scholar 

  28. Tran UPN, Le KKA, Phan NTS (2011) Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal 1:120–127

    Article  CAS  Google Scholar 

  29. Nguyen LTL, Le KKA, Phan NTS (2012) A zeolite imidazolate framework ZIF-8 catalyst for Friedel-Crafts acylation. Chin J Catal 33:688–696

    Article  CAS  Google Scholar 

  30. Miralda MC, Macias EE, Zhu M, Ratnasamy P, Carreon MA (2012) Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal 2:180–183

    Article  CAS  Google Scholar 

  31. Dang TT, Zhu Y, Ngiam JSY, Ghosh SC, Chen A, Seayad AM (2013) Palladium nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for aminocarbonylation. ACS Catal 3:1406–1410

    Article  CAS  Google Scholar 

  32. He M, Yao J, Liu Q, Zhong Z, Wang H (2013) Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton Trans 42:16608–16613

    Article  CAS  Google Scholar 

  33. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Korea Research Institute of Chemical Technology (KRICT), Grant No. SI 1941-20.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Bongkuk Seo or Choong-Sun Lim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.R., Kim, T., Rye, H.S. et al. Zeolitic imidazolate framework promoters in one-pot epoxy–amine reaction. J Mater Sci 55, 2068–2076 (2020). https://doi.org/10.1007/s10853-019-04111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04111-5

Navigation