Skip to main content
Log in

Three-dimensional phase-field simulations of the influence of diffusion interface width on dendritic growth of Fe-0.5 wt.%C alloy

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Fe–C alloys have become one of the most important parts of modern industries. An understanding of the solidification behavior and microstructure formation in Fe–C alloys is necessary for improving their performance. Based on a three-dimensional quantitative phase-field model, we studied the solidification process of Fe-0.5 wt.%C alloy under isothermal conditions and the influence of the diffusion interface width (DIW) on dendritic growth. The results show that when the DIW decreases, the degree of solute enrichment at the solid/liquid interface decreases, the growth velocity of primary dendrite arms increases, and the number and length of secondary dendrite arms increases.

Graphical abstract

The change of dendrite morphology with the increase of \({W}_{0}\) at \(t=300{\tau }_{0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pan SY, Zhu MF, Rettenmayr M (2017) A phase-field study on the peritectic phase transition in Fe-C alloys. Acta Mater 132:565–575

    Article  CAS  Google Scholar 

  2. Pineau A, Guillemot G, Tourret D, Karma A, Gandin CA (2018) Growth competition between columnar dendritic grains-cellular automaton versus phase-field modeling. Acta Mater 155:286–301

    Article  CAS  Google Scholar 

  3. Yang C, Xu QY, Liu BC (2018) Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study. J Mater Sci 53:9755–9770

    Article  CAS  Google Scholar 

  4. Takaki T, Ohno M, Shimokawabe T, Aoki T (2014) Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal. Acta Mater 81:272–283

    Article  CAS  Google Scholar 

  5. Takaki T, Ohno M, Shibuta Y, Sakane S, Shimokawabe T, Aoki T (2016) Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy. J Cryst Growth 442:14–24

    Article  Google Scholar 

  6. Takaki T, Sakane S, Ohno M, Shibuta Y, Shimokawabe T, Aoki T (2016) Large-scale phase-field studies of three-dimensional dendrite competitive growth at the converging grain boundary during directional solidification of a bicrystal binary alloy. Isij Int 56:1427–1435

    Article  CAS  Google Scholar 

  7. Yu FY, Wei YH, Ji YZ, Chen LQ (2018) Phase-field modeling of solidification microstructure evolution during welding. J Mater Process Tech 255:285–293

    Article  CAS  Google Scholar 

  8. Yu FY, Wei YH (2018) Effect of surface tension anisotropy and welding parameters on initial instability dynamics during solidification: a phase-field study. Metall Mater Trans A 49:3293–3305

    Article  CAS  Google Scholar 

  9. Wu LM, Zhang J (2018) Phase-field simulation of dendritic solidification of Ti-6Al-4V during additive manufacturing process. Jom 70:2392–2399

    Article  CAS  Google Scholar 

  10. Ghosh S, Ofori-Opoku N, Guyer JE (2018) Simulation and analysis of gamma-Ni cellular growth during laser powder deposition of Ni-based superalloys. Comp Mater Sci 144:256–264

    Article  CAS  Google Scholar 

  11. Xing H, Dong XL, Wang JY, Jin KX (2018) Orientation dependence of columnar dendritic growth with sidebranching behaviors in directional solidification: insights from phase-field simulations. Metall Mater Trans B 49:1547–1559

    Article  CAS  Google Scholar 

  12. Xing H, Ankit K, Dong XL, Chen HM, Jin KX (2018) Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: A phase-field study. Int J Heat Mass Tran 117:1107–1114

    Article  Google Scholar 

  13. Wang L, Wei YH, Chen JC, Zhao WY (2018) Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy. Int J Heat Mass Tran 123:826–838

    Article  CAS  Google Scholar 

  14. Wang L, Wei YH (2018) Onset of curved dendrite growth in an Al-Cu welding pool: a phase-field study. Jom 70:733–738

    Article  CAS  Google Scholar 

  15. Zhao YH, Liu WJ, Hou H (2014) Phase-field simulation for dendritic growth behavior of pure Ni under different temperature coupling strength. Rare Metal Mat Eng 43:841–845

    Article  CAS  Google Scholar 

  16. Kang YS, Jin YC, Zhao YH, Hou H, Chen LW (2017) Phase-field simulation of tip splitting in dendritic growth of Fe-C alloy. J Iron Steel Res Int 24:171–176

    Article  Google Scholar 

  17. Zhang JB, Wang HF, Kuang WW, Zhang YC, Li S, Zhao YH, Herlach DM (2018) Rapid solidification of non-stoichiometric intermetallic compounds: modeling and experimental verification. Acta Mater 148:86–99

    Article  CAS  Google Scholar 

  18. Kuang WW, Wang HF, Li X, Zhang JB, Zhou Q, Zhao YH (2018) Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: modeling and applications. Acta Mater 159:16–30

    Article  CAS  Google Scholar 

  19. Zhao YH, Zhang B, Hou H, Chen WP, Wang M (2019) Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J Mater Sci Technol 35:1044–1052

    Article  Google Scholar 

  20. Guo HJ, Zhao YH, SunYY TJZ, Hou H, Qi KW, Tian XL (2019) Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary. Superlattice Microst 129:163–175

    Article  CAS  Google Scholar 

  21. Zhang B, Zhao YH, Chen WP, Xu QY, Wang M, Hou H, Wang S (2019) Phase field simulation of dendtrite sidebranching during directional solidification of Al-Si alloy. J Cryst Growth 522:183–190

    Article  CAS  Google Scholar 

  22. Zhang B, ZhaoYH WH, Chen WP, Hou H (2019) Three-dimensional phase field simulation of dendritic morphology of Al-Si alloy. Rare Metal Mat Eng 48:2835–2840

    Google Scholar 

  23. Qi KW, Zhao YH, Tian XL, Peng DW, Sun YY, Hou H (2020) Phase field crystal simulation of the effect of misorientation angle on the low-angle asymmetric tilt grain boundary dislocation motion. Acta Phys Sin 69:140504

    Google Scholar 

  24. Ohno M, Matsuura K (2009) Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid. Phys Rev E 79:031603

    Article  Google Scholar 

  25. Fehlner WR, Vosko SH (1976) A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can J Phys 54:2159–2169

    Article  Google Scholar 

  26. Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701

    Article  CAS  Google Scholar 

  27. Karma A, Rappel WJ (1996) Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E 53:R3017–R3020

    Article  CAS  Google Scholar 

  28. Karma A, Rappel WJ (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323–4349

    Article  CAS  Google Scholar 

  29. Jeong JH, Goldenfeld N, Dantzig JA (2001) Phase-field model for three-dimensional dendritic growth with fluid flow. Phys Rev E 64:041602

    Article  CAS  Google Scholar 

  30. Ode M, Suzuki T, Kim SG, Kim WT (2008) Phase-field model for solidification of Fe-C alloys. Sci Technol Adv Mat 43:43–49

    Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Major Project of Shanxi Province (Nos. 20181101014, 20191102008, 20191102007), National Natural Science Foundation of China (Nos. 52074246, 22008224, 51774254, 51774253, 51804279, 51801189), and Platform and Talent Project of Shanxi Province (No. 201805D211036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhao, Y., Yang, S. et al. Three-dimensional phase-field simulations of the influence of diffusion interface width on dendritic growth of Fe-0.5 wt.%C alloy. Adv Compos Hybrid Mater 4, 371–378 (2021). https://doi.org/10.1007/s42114-021-00215-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00215-2

Keywords

Navigation