Skip to main content
Log in

Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Yu, Y. Wei, Y. Ji, L.-Q. Chen: Journal of Materials Processing Technology 2018, vol. 255, pp. 285-293.

    Article  Google Scholar 

  2. H.L. Wei, J.W. Elmer, T. DebRoy: Acta Materialia 2016, vol. 115, pp. 123-131.

    Article  Google Scholar 

  3. L. Wang, Y. Wei, X. Zhan, F. Yu, X. Cao, C. Gu, W. Ou: Journal of Materials Processing Technology 2017, vol. 246, pp. 22-29.

    Article  Google Scholar 

  4. H. Bhadeshia, L. Svensson: Mathematical modeling of weld phenomena 1993, vol. 1, pp. 109-182.

    Google Scholar 

  5. C. Gu, Y. Wei, F. Yu, X. Liu, L. She: Metallurgical and Materials Transactions A 2017, vol. 48, pp. 4314-4323.

    Article  Google Scholar 

  6. W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, R. Trivedi: Acta Materialia 2000, vol. 48, pp. 43-70.

    Article  Google Scholar 

  7. W. Losert, B.Q. Shi, H.Z. Cummins: Proceedings of the National Academy of Sciences 1998, vol. 95, pp. 439-442.

    Article  Google Scholar 

  8. W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers: Acta Metallurgica 1953, vol. 1, pp. 428-437.

    Article  Google Scholar 

  9. W.W. Mullins, R.F. Sekerka: Journal of Applied Physics 1964, vol. 35, pp. 444-451.

    Article  Google Scholar 

  10. J.A. Warren, J.S. Langer: Physical Review E 1993, vol. 47, pp. 2702-12.

    Article  Google Scholar 

  11. Y. Chen, A.-A. Bogno, N.M. Xiao, B. Billia, X.H. Kang, H. Nguyen-Thi, X.H. Luo, D.Z. Li: Acta Materialia 2012, vol. 60, pp. 199-207.

    Article  Google Scholar 

  12. Z. Wang, J. Wang, G. Yang: Applied Physics Letters 2009, vol. 94, p. 061920.

    Article  Google Scholar 

  13. Z. Wang, J. Wang, G. Yang: Physical Review E 2009, vol. 80, p. 052603.

    Article  Google Scholar 

  14. Z. Dong, W. Zheng, Y. Wei, K. Song: Physical Review E 2014, vol. 89, p. 062403.

    Article  Google Scholar 

  15. W. Zheng, Z. Dong, Y. Wei, K. Song: Journal of Crystal Growth 2014, vol. 402, pp. 203-209.

    Article  Google Scholar 

  16. H. Xing, L. Zhang, K. Song, H. Chen, K. Jin: International Journal of Heat and Mass Transfer 2017, vol. 104, pp. 607-14.

    Article  Google Scholar 

  17. J.J. Hoyt, M. Asta, A. Karma: Materials Science and Engineering: R: Reports 2003, vol. 41, pp. 121-163.

    Article  Google Scholar 

  18. A. Sánchez Osio, S. Liu, D.L. Olson: Materials Science and Engineering: A 1996, vol. 221, pp. 122-133.

    Article  Google Scholar 

  19. L.-Q. Chen: Annual Review of Materials Research 2002, vol. 32, pp. 113-140.

    Article  Google Scholar 

  20. W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma: Annual Review of Materials Research 2002, vol. 32, pp. 163-194.

    Article  Google Scholar 

  21. L. Gránásy, L. Rátkai, A. Szállás, B. Korbuly, G.I. Tóth, L. Környei, T. Pusztai: Metallurgical and Materials Transactions A 2014, vol. 45, pp. 1694-1719.

    Article  Google Scholar 

  22. A. Karma: Physical Review Letters 2001, vol. 87, p. 115701.

    Article  Google Scholar 

  23. L. Wang, Y. Wei, F. Yu: Materials Science and Technology 2017, vol. 33, pp. 846-853.

    Article  Google Scholar 

  24. M. Wei, Y. Tang, L. Zhang, W. Sun, Y. Du: Metallurgical and Materials Transactions A 2015, vol. 46, pp. 3182-3191.

    Article  Google Scholar 

  25. E. Miyoshi, T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, T. Aoki: NPJ Computational Materials 2017, vol. 3, p. 25.

    Article  Google Scholar 

  26. G. Demange, H. Zapolsky, R. Patte, M. Brunel: NPJ Computational Materials 2017, vol. 3, p. 15.

    Article  Google Scholar 

  27. B. Echebarria, R. Folch, A. Karma, M. Plapp: Physical Review E 2004, vol. 70, p. 061604.

    Article  Google Scholar 

  28. W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo, Y. Wang: Computational Materials Science 2014, vol. 82, pp. 525-530.

    Article  Google Scholar 

  29. A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, K. Fezzaa, A. Karma: Acta Materialia 2017, vol. 129, pp. 203-216.

    Article  Google Scholar 

  30. A. Karma, W.-J. Rappel: Physical Review E 1998, vol. 57, pp. 4323-4349.

    Article  Google Scholar 

  31. H. Xing, X. Dong, H. Wu, G. Hao, J. Wang, C. Chen, K. Jin: Scientific Reports 2016, vol. 6, p. 26625.

    Article  Google Scholar 

  32. B. Echebarria, A. Karma, S. Gurevich: Physical Review E 2010, vol. 81, p. 021608.

    Article  Google Scholar 

  33. M. Asta, J.J. Hoyt, A. Karma: Physical Review B 2002, vol. 66, p. 100101.

    Article  Google Scholar 

  34. S. Kou: Welding Metallurgy. Wiley, New York (2003), pp 166-167.

    Google Scholar 

Download references

Acknowledgments

The study is supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the financial aid for the project from the Fundamental Research Funds for the Central Universities NP2016204. The authors acknowledge Long-Qing Chen and Xiaoxing Cheng at Pennsylvania State University for their help in the development of the phase-field code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Wei.

Additional information

Manuscript submitted November 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Wei, Y. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study. Metall Mater Trans A 49, 3293–3305 (2018). https://doi.org/10.1007/s11661-018-4663-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4663-7

Navigation