Skip to main content
Log in

Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study

  • Liquid->Solid->Solid Phase Transformations: Characterization and Modeling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Dursun and C. Soutis, Mater. Des. 56, 862 (2014).

    Article  Google Scholar 

  2. G. Wu and J.M. Yang, JOM 57, 72 (2005).

    Article  Google Scholar 

  3. C. Schubert, M. Klassen, I. Zerner, C. Walz, and G. Sepold, J. Mater. Process. Technol. 115, 2 (2011).

    Article  Google Scholar 

  4. L. Wang, Y.H. Wei, W.Y. Zhao, X.H. Zhan, and L.B. She, J. Manuf. Process. 31, 240 (2018).

    Article  Google Scholar 

  5. L. Wang, Y.H. Wei, X.H. Zhan, F.Y. Yu, X.Y. Cao, and W.M. Ou, J. Mater. Process. Technol. 246, 22 (2017).

    Article  Google Scholar 

  6. S. Ramasamy, JOM 54, 44 (2002).

    Article  Google Scholar 

  7. S.A. David, S.S. Babu, and J.M. Vitek, JOM 55, 14 (2003).

    Article  Google Scholar 

  8. S.A. David and J.M. Vitek, Int. Mater. Rev. 34, 213 (1989).

    Article  Google Scholar 

  9. V. Pavlyk and U. Dilthey, Model. Simul. Mater. Sci. 12, s33 (2004).

    Article  Google Scholar 

  10. R. Han, Y. Li, and S. Lu, Int. J. Heat Mass Transf. 106, 1345 (2017).

    Article  Google Scholar 

  11. C. Gu, Y.H. Wei, X.H. Zhan, and Y. Li, Sci. Technol. Weld. Jt. 22, 47 (2017).

    Article  Google Scholar 

  12. H.L. Wei, J.W. Elmer, and T. DebRoy, Acta Mater. 126, 413 (2007).

    Article  Google Scholar 

  13. Z.Z. Zhang and C.S. Wu, Comput. Mater. Sci. 65, 442 (2012).

    Article  Google Scholar 

  14. Z. Yang, S. Sista, J.W. Elmer, and T. DebRoy, Acta Mater. 48, 4813 (2000).

    Article  Google Scholar 

  15. W.J. Zheng, Z.B. Dong, Y.H. Wei, K.J. Song, J.L. Guo, and Y. Wang, Comput. Mater. Sci. 82, 525 (2014).

    Article  Google Scholar 

  16. L. Wang, Y.H. Wei, and F.Y. Yu, Mater. Sci. Technol. 33, 846 (2016).

    Article  Google Scholar 

  17. Y. Arata, F. Matsuda, S. Mukae, and M. Katoh, Trans. JWRI 2, 184 (1997).

    Google Scholar 

  18. S. Kou, Welding Metallurgy, 2nd ed. (Hoboken: Wiley, 2003).

    Google Scholar 

  19. B. Echebarria, R. Folch, A. Karma, and M. Plapp, Phys. Rev. E 70, 061604 (2004).

    Article  Google Scholar 

  20. D. Tourret and A. Karma, Acta Mater. 82, 64 (2015).

    Article  Google Scholar 

  21. B. Echebarria, A. Karma, and S. Gurevich, Phys. Rev. E 81, 021608 (2010).

    Article  Google Scholar 

  22. M. Asta, J.J. Hoyt, and A. Karma, Phys. Rev. B 66, 100101 (2002).

    Article  Google Scholar 

  23. Y. Chen, A.A. Bogno, N.M. Xiao, B. Billia, X.H. Kang, H. Nguyen-Thi, X.H. Luo, and D.Z. Li, Acta Mater. 60, 199 (2012).

    Article  Google Scholar 

  24. A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, K. Fezzaa, and A. Karma, Acta Mater. 129, 203 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and financial support from the Fundamental Research Funds for the Central Universities NP2016204. The author Wang is supported by the China Scholarship Council as a visiting graduate student at Purdue University (No. 201706830042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wei, Y. Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study. JOM 70, 733–738 (2018). https://doi.org/10.1007/s11837-018-2783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2783-6

Navigation