Skip to main content

Advertisement

Log in

A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The large amount of CO2 emissions from the increasing consumption of fossil fuels is a potential cause for global warming. Photocatalytic reduction of CO2 using sunlight is considered as an attractive method for mitigating CO2 emissions. Extensive amount of researches on CO2 photoreduction are available, which tend to focus on the types of photocatalysts, the photocatalytic activity, and photoconversion efficiency. However, CO2 adsorption in the CO2 photoreduction process has been overlooked, despite it being an initial and important step. Recently, there has been an increase in the number of publications investigating the effects of CO2 adsorption on the CO2 photoreduction process. Thus, this review summarizes the research progress in this regard. This review focuses on the different CO2 adsorption modes and characterization methods as well as the factors influencing CO2 adsorption such as surface area, surface basicity, surface functional groups, surface defects, and exposed crystal facets. Furthermore, the design of nanocomposites that consist of photocatalysts and CO2 adsorption promoters are reviewed and discussed. It has been demonstrated that the CO2 photoreduction performance can be increased by utilizing CO2 adsorption in various types of nanocomposites, including metal oxides, chalcogenides, layered double hydroxides, and metal organic frameworks. This review provides a unique perspective in the design of nanocomposite photocatalysts with the goal of efficient CO2 photoreduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    Article  Google Scholar 

  2. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992

  3. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    Article  Google Scholar 

  4. Chang X, Wang T, Gong J (2016) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9:2177–2196

    Article  Google Scholar 

  5. Marszewski M, Cao S, Yu J, Jaroniec M (2015) Semiconductor-based photocatalytic CO2 conversion. Mater Horiz 2:261–278

    Article  Google Scholar 

  6. Goeppert A, Czaun M, Jones J-P, Prakash GS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048

    Article  Google Scholar 

  7. Takeda H, Cometto C, Ishitani O, Robert M (2017) Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal 7:70–88

    Article  Google Scholar 

  8. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  Google Scholar 

  9. Yamazaki Y, Takeda H, Ishitani O (2015) Photocatalytic reduction of CO2 using metal complexes. J Photochem Photobiol C: Photochem Rev 25:106–137

    Article  Google Scholar 

  10. Su T-m, Qin Z-z, Ji H-b, Jiang Y-x, Huang G (2016) Recent advances in the photocatalytic reduction of carbon dioxide. Environ Chem Lett 14:99–112

    Article  Google Scholar 

  11. Dhakshinamoorthy A, Asiri AM, García H (2016) Metal–organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed 55:5414–5445

    Article  Google Scholar 

  12. Liu X, Inagaki S, Gong J (2016) Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew Chem Int Ed 55:14924–14950

    Article  Google Scholar 

  13. Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 48:6640–6696

  14. Kim W, Edri E, Frei H (2016) Hierarchical inorganic assemblies for artificial photosynthesis. Acc Chem Res 49:1634–1645

    Article  Google Scholar 

  15. Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636

    Article  Google Scholar 

  16. Li Q, Li X, Wageh S, Al-Ghamdi A, Yu J (2015) CdS/graphene nanocomposite photocatalysts. Adv Energy Mater 5:1500010

    Article  Google Scholar 

  17. Huang Z-F, Pan L, Zou J-J, Zhang X, Wang L (2014) Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nano 6:14044–14063

    Google Scholar 

  18. Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619

    Article  Google Scholar 

  19. Inagaki A, Akita M (2010) Visible-light promoted bimetallic catalysis. Coord Chem Rev 254:1220–1239

    Article  Google Scholar 

  20. Ola O, Maroto-Valer MM (2015) Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C: Photochem Rev 24:16–42

    Article  Google Scholar 

  21. De_Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energy Rev 19:82–106

    Article  Google Scholar 

  22. Wang C-C, Zhang Y-Q, Li J, Wang P (2015) Photocatalytic CO2 reduction in metal–organic frameworks: a mini review. J Mol Struct 1083:127–136

    Article  Google Scholar 

  23. Wang W-N, Soulis J, Yang YJ, Biswas P (2014) Comparison of CO2 photoreduction systems: a review. Aerosol Air Qual Res 14:533–549

    Google Scholar 

  24. Liu L, Li Y (2014) Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol Air Qual Res 14:453–469

    Google Scholar 

  25. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408

    Article  Google Scholar 

  26. Chandrasekaran S, Chung JS, Kim EJ, Hur SH (2016) Advanced nano-structured materials for photocatalytic water splitting. J Electrochem Sci Technol 7:1–12

    Article  Google Scholar 

  27. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26:4607–4626

    Article  Google Scholar 

  28. Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today 281:144–164

    Article  Google Scholar 

  29. Yuan L, Xu Y-J (2015) Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl Surf Sci 342:154–167

    Article  Google Scholar 

  30. Han B, Wei W, Chang L, Cheng P, Hu YH (2015) Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal 6:494–497

    Article  Google Scholar 

  31. Wang Z, Teramura K, Huang Z, Hosokawa S, Sakata Y, Tanaka T (2016) Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Cat Sci Technol 6:1025–1032

    Article  Google Scholar 

  32. Mahmodi G, Sharifnia S, Madani M, Vatanpour V (2013) Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts. Sol Energy 97:186–194

    Article  Google Scholar 

  33. Tahir M, Tahir B, Amin NAS (2015) Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation. Appl Surf Sci 356:1289–1299

    Article  Google Scholar 

  34. Yazdanpour N, Sharifnia S (2013) Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2. Sol Energ Mat Sol C 118:1–8

    Article  Google Scholar 

  35. Tahir M, Tahir B, Amin NS (2015) Photocatalytic CO2 reduction by CH4 over montmorillonite modified TiO2 nanocomposites in a continuous monolith photoreactor. Mater Res Bull 63:13–23

    Article  Google Scholar 

  36. Qin S, Xin F, Liu Y, Yin X, Ma W (2011) Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts. J Colloid Interface Sci 356:257–261

    Article  Google Scholar 

  37. Chen J, Xin F, Qin S, Yin X (2013) Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chem Eng J 230:506–512

    Article  Google Scholar 

  38. Zhou S, Liu Y, Li J, Wang Y, Jiang G, Zhao Z, Wang D, Duan A, Liu J, Wei Y (2014) Facile in situ synthesis of graphitic carbon nitride (gC3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl Catal B Environ 158:20–29

    Article  Google Scholar 

  39. Xiong Z, Lei Z, Kuang C-C, Chen X, Gong B, Zhao Y, Zhang J, Zheng C, Wu JC (2017) Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2OTiO2 nanocrystals: the interaction between Pt and Cu2O cocatalysts. Appl Catal B Environ 202:695–703

    Article  Google Scholar 

  40. Niu P, Yang Y, Jimmy CY, Liu G, Cheng H-M (2014) Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a gC3N4 photocatalyst. Chem Commun 50:10837–10840

    Article  Google Scholar 

  41. Mao J, Peng T, Zhang X, Li K, Ye L, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Cat Sci Technol 3:1253–1260

    Article  Google Scholar 

  42. Mizuno T, Adachi K, Ohta K, Saji A (1996) Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. J Photochem Photobiol A Chem 98:87–90

    Article  Google Scholar 

  43. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  Google Scholar 

  44. Kubacka A, Fernández-García M, Colón G (2011) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  Google Scholar 

  45. Li H, Zhou Y, Tu W, Ye J, Zou Z (2015) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25:998–1013

    Article  Google Scholar 

  46. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686

    Article  Google Scholar 

  47. Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758

    Article  Google Scholar 

  48. Hussain M, Akhter P, Saracco G, Russo N (2015) Nanostructured TiO2/KIT-6 catalysts for improved photocatalytic reduction of CO2 to tunable energy products. Appl Catal B Environ 170:53–65

    Article  Google Scholar 

  49. Qin Z, Tian H, Su T, Ji H, Guo Z (2016) Soft template inducted hydrothermal BiYO3 catalysts for enhanced formic acid formation from the photocatalytic reduction of carbon dioxide. RSC Adv 6:52665–52673

    Article  Google Scholar 

  50. Liu L, Zhao C, Xu J, Li Y (2015) Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material. Appl Catal B Environ 179:489–499

    Article  Google Scholar 

  51. Meng X, Ouyang S, Kako T, Li P, Yu Q, Wang T, Ye J (2014) Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem Commun 50:11517–11519

    Article  Google Scholar 

  52. Jia C, Fan W, Cheng X, Zhao X, Sun H, Li P, Lin N (2014) The roles of surface structure, oxygen defects, and hydration in the adsorption of CO2 on low-index ZnGa2O4 surfaces: a first-principles investigation. Phys Chem Chem Phys 16:7538–7547

    Article  Google Scholar 

  53. Liu L, Fan W, Zhao X, Sun H, Li P, Sun L (2012) Surface dependence of CO2 adsorption on Zn2GeO4. Langmuir 28:10415–10424

    Article  Google Scholar 

  54. Ma S, Song W, Liu B, Zhong W, Deng J, Zheng H, Liu J, Gong X-Q, Zhao Z (2016) Facet-dependent photocatalytic performance of TiO2: a DFT study. Appl Catal B Environ 198:1–8

    Article  Google Scholar 

  55. Yin W-J, Krack M, Wen B, Ma S-Y, Liu L-M (2015) CO2 capture and conversion on rutile TiO2 (110) in the water environment: insight by first-principles calculations. J Phys Chem Lett 6:2538–2545

    Article  Google Scholar 

  56. Bhattacharyya K, Danon A, Vijayan BK, Gray KA, Stair PC, Weitz E (2013) Role of the surface Lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FT-IR study. J Phys Chem C 117:12661–12678

    Article  Google Scholar 

  57. Wang Y, Zhao J, Wang T, Li Y, Li X, Yin J, Wang C (2016) CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: surface species and their reactivity. J Catal 337:293–302

    Article  Google Scholar 

  58. Liu L, Liu Z, Sun H, Zhao X (2017) Morphological effects of Au 13 clusters on the adsorption of CO2 over anatase TiO2 (101). Appl Surf Sci 399:469–479

    Article  Google Scholar 

  59. Singhal N, Ali A, Vorontsov A, Pendem C, Kumar U (2016) Efficient approach for simultaneous CO and H2 production via photoreduction of CO2 with water over copper nanoparticles loaded TiO2. Appl Catal A Gen 523:107–117

    Article  Google Scholar 

  60. Yin W-J, Wen B, Bandaru S, Krack M, Lau M, Liu L-M (2016) The effect of excess electron and hole on CO2 adsorption and activation on rutile (110) surface. Sci Rep 6:23298

    Article  Google Scholar 

  61. Wei Y, Li X, Zhang R, Liu Y, Wang W, Ling Y, El-Toni AM, Zhao D (2016) Periodic mesoporous organosilica nanocubes with ultrahigh surface areas for efficient CO2 adsorption. Sci Rep 6:20769

    Article  Google Scholar 

  62. Liu Q, Low Z-X, Li L, Razmjou A, Wang K, Yao J, Wang H (2013) ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J Mater Chem A 1:11563–11569

    Article  Google Scholar 

  63. Cheng H, Huang B, Liu Y, Wang Z, Qin X, Zhang X, Dai Y (2012) An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem Commun 48:9729–9731

    Article  Google Scholar 

  64. Fang B, Xing Y, Bonakdarpour A, Zhang S, Wilkinson DP (2015) Hierarchical CuO–TiO2 hollow microspheres for highly efficient photodriven reduction of CO2 to CH4. ACS Sustain Chem Eng 3:2381–2388

    Article  Google Scholar 

  65. Zhu S, Liang S, Bi J, Liu M, Zhou L, Wu L, Wang X (2016) Photocatalytic reduction of CO2 with H2O to CH4 over ultrathin SnNb2O6 2D nanosheets under visible light irradiation. Green Chem 18:1355–1363

    Article  Google Scholar 

  66. Zhang L, Ni C, Jiu H, Xie C, Yan J, Qi G (2017) One-pot synthesis of Ag-TiO2/reduced graphene oxide nanocomposite for high performance of adsorption and photocatalysis. Ceram Int 43:5450–5456

    Article  Google Scholar 

  67. Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23:1743–1749

    Article  Google Scholar 

  68. Wang Y, Chen Y, Zuo Y, Wang F, Yao J, Li B, Kang S, Li X, Cui L (2013) Hierarchically mesostructured TiO2/graphitic carbon composite as a new efficient photocatalyst for the reduction of CO2 under simulated solar irradiation. Cat Sci Technol 3:3286–3291

    Article  Google Scholar 

  69. Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L (2012) Adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J 180:151–158

    Article  Google Scholar 

  70. Yu K-P, Yu W-Y, Kuo M-C, Liou Y-C, Chien S-H (2008) Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl Catal B Environ 84:112–118

    Article  Google Scholar 

  71. Kar P, Farsinezhad S, Mahdi N, Zhang Y, Obuekwe U, Sharma H, Shen J, Semagina N, Shankar K (2016) Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res 9:3478–3493

    Article  Google Scholar 

  72. Ding J, Bu Y, Ou M, Yu Y, Zhong Q, Fan M (2017) Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2. Appl Catal B Environ 202:314–325

    Article  Google Scholar 

  73. Jin J, He T (2017) Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl Surf Sci 394:364–370

    Article  Google Scholar 

  74. Lee H, Kwak BS, Park N-K, Baek J-I, Ryu H-J, Kang M (2017) Assembly of a check-patterned CuS x–TiO2 film with an electron-rich pool and its application for the photoreduction of carbon dioxide to methane. Appl Surf Sci 393:385–396

    Article  Google Scholar 

  75. Lee JH, Lee H, Kang M (2016) Remarkable photoconversion of carbon dioxide into methane using Bi-doped TiO2 nanoparticles prepared by a conventional sol–gel method. Mater Lett 178:316–319

    Article  Google Scholar 

  76. Do JY, Im Y, Kwak BS, Park S-M, Kang M (2016) Preparation of basalt fiber@perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction. Ceram Int 42:5942–5951

    Article  Google Scholar 

  77. Yang Y, Qiu M, Liu L (2016) TiO2 nanorod array@ carbon cloth photocatalyst for CO2 reduction. Ceram Int 42:15081–15086

    Article  Google Scholar 

  78. Wang F, Zhou Y, Li P, Li H, Tu W, Yan S, Zou Z (2014) Formation of 3D interconnectively macro/mesoporous TiO2 sponges through gelation of lotus root starch toward CO2 photoreduction into hydrocarbon fuels. RSC Adv 4:43172–43177

    Article  Google Scholar 

  79. Wang T, Meng X, Li P, Ouyang S, Chang K, Liu G, Mei Z, Ye J (2014) Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect. Nano Energy 9:50–60

    Article  Google Scholar 

  80. Yu L, Li G, Zhang X, Ba X, Shi G, Li Y, Wong PK, Yu JC, Yu Y (2016) Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis. ACS Catal 6:6444–6454

    Article  Google Scholar 

  81. Park H-a, Choi JH, Choi KM, Lee DK, Kang JK (2012) Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J Mater Chem 22:5304–5307

    Article  Google Scholar 

  82. Yan SC, Ouyang SX, Gao J, Yang M, Feng JY, Fan XX, Wan LJ, Li ZS, Ye JH, Zhou Y (2010) A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew Chem 122:6544–6548

    Article  Google Scholar 

  83. Xi G, Ouyang S, Ye J (2011) General synthesis of hybrid TiO2 mesoporous “French fries” toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: a case of TiO2/ZnO. Chem-Eur J 17:9057–9061

    Article  Google Scholar 

  84. Wang Y, Li B, Zhang C, Cui L, Kang S, Li X, Zhou L (2013) Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal B Environ 130:277–284

    Article  Google Scholar 

  85. Ha MN, Lu G, Liu Z, Wang L, Zhao Z (2016) 3DOM-LaSrCoFeO6 δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J Mater Chem A 4:13155–13165

    Article  Google Scholar 

  86. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal Today 44:327–332

    Article  Google Scholar 

  87. Zhao C, Liu L, Zhang Q, Wang J, Li Y (2012) Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce–TiO2/SBA-15 composites. Cat Sci Technol 2:2558–2568

    Article  Google Scholar 

  88. Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45:221–227

    Article  Google Scholar 

  89. Yang C-C, Vernimmen J, Meynen V, Cool P, Mul G (2011) Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. J Catal 284:1–8

    Article  Google Scholar 

  90. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  Google Scholar 

  91. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2011) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724–781

    Article  Google Scholar 

  92. Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X (2016) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew Chem 128:14522–14526

    Article  Google Scholar 

  93. Chen D, Xing H, Wang C, Su Z (2016) Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. J Mater Chem A 4:2657–2662

    Article  Google Scholar 

  94. Liu Y, Yang Y, Sun Q, Wang Z, Huang B, Dai Y, Qin X, Zhang X (2013) Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Appl Mater Interfaces 5:7654–7658

    Article  Google Scholar 

  95. Liu L, Zhao C, Pitts D, Zhao H, Li Y (2014) CO2 photoreduction with H2O vapor by porous MgO-TiO2 microspheres: effects of surface MgO dispersion and CO2 adsorption-desorption dynamics. Cat Sci Technol 4:1539–1546

    Article  Google Scholar 

  96. Kwon S, Liao P, Stair PC, Snurr RQ (2016) Alkaline-earth metal-oxide overlayers on TiO2: application toward CO2 photoreduction. Cat Sci Technol 6:7885–7895

    Article  Google Scholar 

  97. Sun Z, Yang Z, Liu H, Wang H, Wu Z (2014) Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: effect of post-calcination and water vapor. Appl Surf Sci 315:360–367

    Article  Google Scholar 

  98. Li Q, Zong L, Li C, Yang J (2014) Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl Surf Sci 314:458–463

    Article  Google Scholar 

  99. Wang M, Wang D, Li Z (2016) Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction. Appl Catal B Environ 183:47–52

    Article  Google Scholar 

  100. Liu Y, Zhou S, Li J, Wang Y, Jiang G, Zhao Z, Liu B, Gong X, Duan A, Liu J (2015) Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl Catal B Environ 168:125–131

    Article  Google Scholar 

  101. Ram Reddy M, Xu Z, Lu G, Diniz da Costa J (2006) Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind Eng Chem Res 45:7504–7509

    Article  Google Scholar 

  102. Zhao C, Liu L, Rao G, Zhao H, Wang L, Xu J, Li Y (2015) Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor. Cat Sci Technol 5:3288–3295

    Article  Google Scholar 

  103. Shanmugam R, Thamaraichelvan A, Viswanathan B (2015) Methanol formation by catalytic hydrogenation of CO2 on a nitrogen doped zinc oxide surface: an evaluative study on the mechanistic pathway by density functional theory. RSC Adv 5:60524–60533

    Article  Google Scholar 

  104. Michalkiewicz B, Majewska J, Kądziołka G, Bubacz K, Mozia S, Morawski AW (2014) Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. J CO2 Util 5:47–52

    Article  Google Scholar 

  105. Samanta P, Chandra P, Ghosh SK (2016) Hydroxy-functionalized hyper-cross-linked ultra-microporous organic polymers for selective CO2 capture at room temperature. Beilstein J Org Chem 12:1981–1986

    Article  Google Scholar 

  106. Fu J, Cao S, Yu J, Low J, Lei Y (2014) Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Trans 43:9158–9165

    Article  Google Scholar 

  107. Yu C-H, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    Google Scholar 

  108. Liao Y, Cao SW, Yuan Y, Gu Q, Zhang Z, Xue C (2014) Efficient CO2 capture and photoreduction by amine-functionalized TiO2. Chem Eur J 20:10220–10222

    Article  Google Scholar 

  109. Xia P, Zhu B, Yu J, Cao S, Jaroniec M (2017) Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J Mater Chem A 5:3230–3238

    Article  Google Scholar 

  110. Liu L, Jiang Y, Zhao H, Chen J, Cheng J, Yang K, Li Y (2016) Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal 6:1097–1108

    Article  Google Scholar 

  111. Thompson TL, Diwald O, Yates JT (2003) CO2 as a probe for monitoring the surface defects on TiO2(110) temperature-programmed desorption. J Phys Chem B 107:11700–11704

    Article  Google Scholar 

  112. Henderson MA (1998) Evidence for bicarbonate formation on vacuum annealed TiO2(110) resulting from a precursor-mediated interaction between CO2 and H2O. Surf Sci 400:203–219

    Article  Google Scholar 

  113. Zhu S, Liang S, Tong Y, An X, Long J, Fu X, Wang X (2015) Photocatalytic reduction of CO2 with H2O to CH4 on Cu (i) supported TiO2 nanosheets with defective {001} facets. Phys Chem Chem Phys 17:9761–9770

    Article  Google Scholar 

  114. Zhao J, Li Y, Zhu Y, Wang Y, Wang C (2016) Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: role of metallic Cu. Appl Catal A Gen 510:34–41

    Article  Google Scholar 

  115. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S, Okada T, Kobayashi H (1997) Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites 1. J Phys Chem B 101:8270–8278

    Article  Google Scholar 

  116. Xu H, Ouyang S, Li P, Kako T, Ye J (2013) High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl Mater Interfaces 5:1348–1354

    Article  Google Scholar 

  117. Lang Q, Yang Y, Zhu Y, Hu W, Jiang W, Zhong S, Gong P, Teng B, Zhao L, Bai S (2017) High-index facet engineering of PtCu cocatalysts for superior photocatalytic reduction of CO2 to CH4. J Mater Chem A 5:6686–6694

    Article  Google Scholar 

  118. Bai S, Wang X, Hu C, Xie M, Jiang J, Xiong Y (2014) Two-dimensional gC3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem Commun 50:6094–6097

    Article  Google Scholar 

  119. Burghaus U (2009) Surface science perspective of carbon dioxide chemistry—adsorption kinetics and dynamics of CO2 on selected model surfaces. Catal Today 148:212–220

    Article  Google Scholar 

  120. Funk S, Burghaus U (2006) Adsorption of CO2 on oxidized, defected, hydrogen and oxygen covered rutile (1 [times] 1)-TiO2(110). Phys Chem Chem Phys 8:4805–4813

    Article  Google Scholar 

  121. Ramis G, Busca G, Lorenzelli V (1991) Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species. Mater Chem Phys 29:425–435

    Article  Google Scholar 

  122. Danon A, Stair PC, Weitz E (2011) FTIR study of CO2 adsorption on amine-grafted SBA-15: elucidation of adsorbed species. J Phys Chem C 115:11540–11549

    Article  Google Scholar 

  123. Liu L, Zhao C, Li Y (2012) Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2–x nanoparticles at room temperature. J Phys Chem C 116:7904–7912

    Article  Google Scholar 

  124. Okawa Y, Tanaka K-i (1995) STM investigation of the reaction of Ag-O added rows with CO2 on a Ag(110) surface. Surf Sci 344:L1207–L1212

    Article  Google Scholar 

  125. Schaub R, Wahlström E, Rønnau A, Lægsgaard E, Stensgaard I, Besenbacher F (2003) Oxygen-mediated diffusion of oxygen vacancies on the TiO2 (110) surface. Science 299:377–379

    Article  Google Scholar 

  126. Acharya DP, Camillone N, Sutter P (2011) CO2 adsorption, diffusion, and electron-induced chemistry on rutile TiO2(110): a low-temperature scanning tunneling microscopy study. J Phys Chem C 115:12095–12105

    Article  Google Scholar 

  127. Tanaka K, Miyahara K, Toyoshima I (1984) Adsorption of CO2 on TiO2 and Pt/TiO2 studied by X-ray photoelectron spectroscopy and Augen electron spectroscopy. J Phys Chem 88:3504–3508

    Article  Google Scholar 

  128. Göpel W, Rocker G, Feierabend R (1983) Intrinsic defects of TiO2 (110): interaction with chemisorbed O2, H2, CO, and CO2. Phys Rev B 28:3427

    Article  Google Scholar 

  129. Srinivas B, Shubhamangala B, Lalitha K, Reddy PAK, Kumari VD, Subrahmanyam M, De BR (2011) Photocatalytic reduction of CO2 over Cu-TiO2/molecular sieve 5A composite. Photochem Photobiol 87:995–1001

    Article  Google Scholar 

  130. Xie S, Wang Y, Zhang Q, Deng W, Wang Y (2014) MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 4:3644–3653

    Article  Google Scholar 

  131. Liu L, Zhao C, Zhao H, Pitts D, Li Y (2013) Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability. Chem Commun 49:3664–3666

    Article  Google Scholar 

  132. Liang L, Lei F, Gao S, Sun Y, Jiao X, Wu J, Qamar S, Xie Y (2015) Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew Chem Int Ed 54:13971–13974

    Article  Google Scholar 

  133. Zhang L, Li N, Jiu H, Qi G, Huang Y (2015) ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceram Int 41:6256–6262

    Article  Google Scholar 

  134. Wang H, Raziq F, Qu Y, Qin C, Wang J, Jing L (2015) Role of quaternary N in N-doped graphene–Fe2O3 nanocomposites as efficient photocatalysts for CO2 reduction and acetaldehyde degradation. RSC Adv 5:85061–85064

    Article  Google Scholar 

  135. Pan Y-X, You Y, Xin S, Li Y, Fu G, Cui Z, Men Y-L, Cao F-F, Yu S-H, Goodenough JB (2017) Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J Am Chem Soc 139:4123–4129

    Article  Google Scholar 

  136. Tsuneoka H, Teramura K, Shishido T, Tanaka T (2010) Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J Phys Chem C 114:8892–8898

    Article  Google Scholar 

  137. Liao Y, Hu Z, Gu Q, Xue C (2015) Amine-functionalized ZnO nanosheets for efficient CO2 capture and photoreduction. Molecules 20:18847–18855

    Article  Google Scholar 

  138. Kohno Y, Tanaka T, Funabiki T, Yoshida S (1998) Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2O ver ZrO2. J Chem Soc Faraday Trans 94:1875–1880

    Article  Google Scholar 

  139. Li X, Chen J, Li H, Li J, Xu Y, Liu Y, Zhou J (2011) Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation. J Nat Gas Chem 20:413–417

    Article  Google Scholar 

  140. Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416

    Article  Google Scholar 

  141. Ehsan MF, Ashiq MN, He T (2015) Hollow and mesoporous ZnTe microspheres: synthesis and visible-light photocatalytic reduction of carbon dioxide into methane. RSC Adv 5:6186–6194

    Article  Google Scholar 

  142. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem 124:8132–8135

    Article  Google Scholar 

  143. Zhao H, Xu J, Liu L, Rao G, Zhao C, Li Y (2016) CO2 photoreduction with water vapor by Ti-embedded MgAl layered double hydroxides. J CO2 Util 15:15–23

    Article  Google Scholar 

  144. Hong J, Zhang W, Wang Y, Zhou T, Xu R (2014) Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: the role of carbon dioxide enrichment. ChemCatChem 6:2315–2321

    Article  Google Scholar 

  145. Crake A, Christoforidis KC, Kafizas A, Zafeiratos S, Petit C (2017) CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–Vis irradiation. Appl Catal B Environ 210:131–140

    Article  Google Scholar 

  146. AlOtaibi B, Kong X, Vanka S, Woo S, Pofelski A, Oudjedi F, Fan S, Kibria MG, Botton GA, Ji W (2016) Photochemical carbon dioxide reduction on Mg-doped Ga (In) N nanowire arrays under visible light irradiation. ACS Energy Lett 1:246–252

    Article  Google Scholar 

  147. Kong XY, Lee W, Ong WJ, Chai SP, Mohamed AR (2016) Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 8:3074–3081

    Article  Google Scholar 

  148. Bai Y, Ye L, Chen T, Wang P, Wang L, Shi X, Wong PK (2017) Synthesis of hierarchical bismuth-rich Bi4O5 Br x I 2-x solid solutions for enhanced photocatalytic activities of CO2 conversion and Cr (VI) reduction under visible light. Appl Catal B Environ 203:633–640

    Article  Google Scholar 

  149. Guo J, Ouyang S, Kako T, Ye J (2013) Mesoporous In(OH)3 for photoreduction of CO2 into renewable hydrocarbon fuels. Appl Surf Sci 280:418–423

    Article  Google Scholar 

  150. Zhu S, Liang S, Wang Y, Zhang X, Li F, Lin H, Zhang Z, Wang X (2016) Ultrathin nanosheets of molecular sieve SAPO-5: a new photocatalyst for efficient photocatalytic reduction of CO2 with H2O to methane. Appl Catal B Environ 187:11–18

    Article  Google Scholar 

  151. Pan B, Luo S, Su W, Wang X (2015) Photocatalytic CO2 reduction with H2O over LaPO4 nanorods deposited with Pt cocatalyst. Appl Catal B Environ 168:458–464

    Article  Google Scholar 

  152. Tian J, Sang Y, Zhao Z, Zhou W, Wang D, Kang X, Liu H, Wang J, Chen S, Cai H, Huang H (2013) Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small 9:3864–3872

    Article  Google Scholar 

  153. Muñoz-Batista MJ, Kubacka A, Gómez-Cerezo MN, Tudela D, Fernández-García M (2013) Sunlight-driven toluene photo-elimination using CeO2-TiO2 composite systems: a kinetic study. Appl Catal B Environ 140–141:626–635

    Article  Google Scholar 

  154. Liu H, Wang M, Wang Y, Liang Y, Cao W, Su Y (2011) Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J Photochem Photobiol A Chem 223:157–164

    Article  Google Scholar 

  155. Yoshida S, Kohno Y (2001) A new type of photocatalysis initiated by photoexcitation of adsorbed carbon dioxide on ZrO2. Catal Surv Jpn 4:107–114

    Article  Google Scholar 

  156. Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2O ver ZrO2. A study on interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639

    Article  Google Scholar 

  157. Su T, Tian H, Qin Z, Ji H (2017) Preparation and characterization of Cu modified BiYO3 for carbon dioxide reduction to formic acid. Appl Catal B Environ 202:364–373

    Article  Google Scholar 

  158. Pan Y-X, Sun Z-Q, Cong H-P, Men Y-L, Xin S, Song J, Yu S-H (2016) Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res 9:1689–1700

    Article  Google Scholar 

  159. Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) Photocatalytic conversion of carbon dioxide into methanol using zinc–copper–M(III) (M = aluminum, gallium) layered double hydroxides. J Catal 279:123–135

    Article  Google Scholar 

  160. Silva CG, Bouizi Y, Fornés V, García H (2009) Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J Am Chem Soc 131:13833–13839

    Article  Google Scholar 

  161. Parida K, Satpathy M, Mohapatra L (2012) Incorporation of Fe3 + into Mg/Al layered double hydroxide framework: effects on textural properties and photocatalytic activity for H2 generation. J Mater Chem 22:7350–7357

    Article  Google Scholar 

  162. Wang H, Xiang X, Li F (2010) Hybrid ZnAl-LDH/CNTs nanocomposites: noncovalent assembly and enhanced photodegradation performance. AICHE J 56:768–778

    Google Scholar 

  163. Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211

    Article  Google Scholar 

  164. Azzouz A, Ursu A-V, Nistor D, Sajin T, Assaad E, Roy R (2009) TPD study of the reversible retention of carbon dioxide over montmorillonite intercalated with polyol dendrimers. Thermochim Acta 496:45–49

    Article  Google Scholar 

  165. Gao Y, Zhang Z, Wu J, Yi X, Zheng A, Umar A, O’Hare D, Wang Q (2013) Comprehensive investigation of CO2 adsorption on Mg–Al–CO3 LDH-derived mixed metal oxides. J Mater Chem A 1:12782–12790

    Article  Google Scholar 

  166. Wang J, Stevens LA, Drage TC, Wood J (2012) Preparation and CO2 adsorption of amine modified Mg–Al LDH via exfoliation route. Chem Eng Sci 68:424–431

    Article  Google Scholar 

  167. Yan S, Ouyang S, Xu H, Zhao M, Zhang X, Ye J (2016) Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. J Mater Chem A 4:15126–15133

    Article  Google Scholar 

  168. Wang C, Lin W (2011) Diffusion-controlled luminescence quenching in metal−organic frameworks. J Am Chem Soc 133:4232–4235

    Article  Google Scholar 

  169. Zeng L, Guo X, He C, Duan C (2016) Metal–organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catal 6:7935–7947

    Article  Google Scholar 

  170. Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang H-L, Jiang J, Zhang Q, Xie Y, Xiong Y (2014) Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater 26:4783–4788

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from National Science Foundation CAREER Award (CBET#1538404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Pan, F. & Li, Y. A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Adv Compos Hybrid Mater 1, 6–31 (2018). https://doi.org/10.1007/s42114-017-0001-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0001-6

Keywords

Navigation