Skip to main content
Log in

PLA/EVA/Teak Wood Flour Biocomposites for Packaging Application: Evaluation of Mechanical Performance and Biodegradation Properties

  • Research Article
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

Mechanical properties such as tensile modulus and strength, elongation-at-break, and impact strength of poly(lactic acid)/ethylene-co-vinyl acetate copolymer (EVA, vinyl acetate content 18 weight %)/Teak wood flour (TWF) composites were evaluated at TWF volume fractions ranging from Φf = 0.1–0.32. Tensile modulus showed an initial increase up to Φf = 0.25 and the parameter decreased marginally at Φf = 0.32, however, remaining much higher than that at Φf = 0. The increase in modulus was attributed to the generation of mechanical restrains by TWF. This mechanical restrains decreased ductility of the composites which also decreased the impact strength. The composite structure was evaluated by comparing the tensile properties with predictive theories, of two-phase models. TWF decreased the thermal stability of the composite, although char yield enhanced due to decomposition of cellulosic bodies in TWF. Differential scanning calorimetry (DSC) studies indicated decrease in the crystallinity of the crystallizable component PLA in the presence of TWF particles in the polymer blend matrix. The biodegradation studies were undertaken to evaluate the biodegradation of the composite under soil burier condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. https://doi.org/10.1023/A:1021013921916

    Article  Google Scholar 

  2. Wool RP, Sun XS (2005) Bio-Based Polymers and Composites, Chapter 4. Elsevier Academic Press, United States, p 57

    Google Scholar 

  3. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002

    Article  Google Scholar 

  4. Polymers C, Av L (2017) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2006.04.004

    Article  Google Scholar 

  5. Kim K, Lee B, Kim H, Dorgan JR, Read M (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:10–11. https://doi.org/10.1007/s10973-011-1350-y

    Article  Google Scholar 

  6. Oliveira RVB, Schmidt V (2017) Soy protein isolate/poly (lactic acid) injection- molded biodegradable blends for slow release of fertilizers. Ind Crops Prod 36:41–46. https://doi.org/10.1016/j.indcrop.2011.08.003

    Article  Google Scholar 

  7. Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US (2005) Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500. https://doi.org/10.1016/j.polymdegradstab.2005.04.006

    Article  Google Scholar 

  8. Oksman K, Skrifvars M, Selin J (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324. https://doi.org/10.1016/s0266-3538(03)00103-9

    Article  Google Scholar 

  9. Shanks RA, Hodzic A, Ridderhof D (2005) Composites of poly (lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci 99:2305–2313. https://doi.org/10.1002/app.22531

    Article  Google Scholar 

  10. Plackett D, Løgstrup T, Batsberg W, Nielsen L (2003) Biodegradable composites based on l -polylactide and jute fibres. Composites Sci Technol 63:1287–1296. https://doi.org/10.1016/S0266-3538(03)00100-3

    Article  Google Scholar 

  11. Serizawa S, Inoue K, Iji M (2005) Kenaf-Fiber-reinforced poly (lactic acid) used for electronic products. J Appl Polym Sci. 100:618–624. https://doi.org/10.1002/app.23377

    Article  Google Scholar 

  12. Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater Eng 288:35–43. https://doi.org/10.1002/mame.200290031

    Article  Google Scholar 

  13. Lee S, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A Appl Sci Manuf 37:80–91. https://doi.org/10.1016/j.compositesa.2005.04.015

    Article  Google Scholar 

  14. Polylactide WR (2006) Dynamic-mechanical properties of wood-fiber reinforced polylactide: experimental characterization and micromechanical modeling. J Thermoplast Composite Mater 19:613–637. https://doi.org/10.1177/089270570606748

    Article  Google Scholar 

  15. Yu L, Petinakis S, Dean K, Bilyk A, Wu D (2007) Green polymeric blends and composites from renewable resources. Macromol Symp 249–250:535–539. https://doi.org/10.1002/masy.200750432

    Article  Google Scholar 

  16. Park JW, Im SS (2003) Miscibility and morphology in blends of poly (L -lactic acid) and poly (vinyl acetate- co -vinyl alcohol). Polymer 44:4341–4354. https://doi.org/10.1016/s0032-3861(03)00346-x

    Article  Google Scholar 

  17. Gajria AM, Mccarthy SP (1996) Miscibility poly (lactic and biodegradability acid) and poly (vinyl of blends acetate). Polymer 37:437–444. https://doi.org/10.1016/0032-3861(96)82913-2

    Article  Google Scholar 

  18. Zhang X, Xiao Y, Lang M (2012) Synthesis and degradation behavior of miktoarm poly (e -caprolactone) 2-b-poly (L -lactone) 2 microspheres. Polym J 45:420–426. https://doi.org/10.1038/pj.2012.166

    Article  Google Scholar 

  19. Nehra R (2018). Ph.D. thesis: studies on polylactide-based blend and nanocomposites. IIT Delhi

  20. Su Z, Li Q, Liu Y, Hu G, Wu C (2009) Compatibility and phase structure of binary blends of poly (lactic acid) and glycidyl methacrylate grafted poly (ethylene octane). Eur Polym J 45:2428–2433. https://doi.org/10.1016/j.eurpolymj.2009.04.028

    Article  Google Scholar 

  21. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2011) Toughness enhancement of poly (lactic acid) by melt blending with natural rubber. J Appl Polym Sci. https://doi.org/10.1002/app

    Article  Google Scholar 

  22. Park JW, Im SS (2002) Phase behavior and morphology in blends of poly (L-lactic acid) and poly (butylene succinate). J Appl Polym Sci 86:647–655. https://doi.org/10.1002/app.10923

    Article  Google Scholar 

  23. Abddwahab MA, Flynn A, Chiou BS, Immam S, Orls W, Chizellini E (2012) Polym Degrad stab. 97(9): 1822–1828. https://doi.org/10.1016/j.polymdegradstab.2012.05.036

  24. Singla RK, Maiti SN, Ghosh AK (2016) RSC Advances ethylene- co -vinyl-acetate blends via a melt mechanical and morphological interpretation. RSC Adv 6:14580–14588. https://doi.org/10.1039/c5ra24897c

    Article  Google Scholar 

  25. Ja O et al (2011) Composites: part A nanocomposite nanofibers of poly (d, l -lactic-co-glycolic acid) and graphene oxide nanosheets. Compos A 42:1978–1984

    Article  Google Scholar 

  26. Sharma R, Maiti SN (2014) Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym Plast Technol Eng 53:229–238. https://doi.org/10.1080/03602559.2013.843706

    Article  Google Scholar 

  27. Sewda K, Maiti SN (2009) Mechanical properties of teak wood flour-reinforced HDPE composites. J Appl Polym Sci. https://doi.org/10.1002/app

    Article  Google Scholar 

  28. ASTM D 256-10E1 (2014) Standard test method for determining the Izod pendulum impact resistance of plastics. ASTM international, west conshohocken, PA, 2010. ASTM D 368-14, PA, 2014

  29. Li Y et al (2011) Mechanical properties of poly (l -lactide)/ethylene- co -vinyl acetate blends with different VA contents. Prog Polym Sci 32(4):483–507. https://doi.org/10.1002/app

    Article  Google Scholar 

  30. Kumar R, Yakubu MK, Anandjiwala RD (2010) Biodegradation of flax fiber reinforced poly lactic acid. Expr Polym Lett 4:423–430. https://doi.org/10.3144/expresspolymlett.2010.53

    Article  Google Scholar 

  31. Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429. https://doi.org/10.1007/s10924-010-0185-0

    Article  Google Scholar 

  32. Singhla RK, Maiti SN, Ghosh AK (2016) Mechanical, morphological, and solid- state viscoelastic response of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes. J Mater Sci 51:10278–10292. https://doi.org/10.1007/s1083-016-0255-3

    Article  Google Scholar 

  33. Li Y, Venkateshan K, Sun XS (2010) Mechanical and thermal properties, morphology and relaxation characteristics of poly(lactic acid) and soy flour/wood flour blends. Polym Int 59:1099–1109. https://doi.org/10.1002/pi.2834

    Article  Google Scholar 

  34. Sun XS, Moura RA, Li W (2017) Effects of starch types on mechanical properties of poly (lactic acid)/starch composites. Int Polym Proc 22:3139. https://doi.org/10.3139/217.2052

    Article  Google Scholar 

  35. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol. 44:353–363.

    Google Scholar 

  36. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338. https://doi.org/10.1016/j.polymdegradstab.2014.01.002

    Article  Google Scholar 

  37. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrol 107:323–331. https://doi.org/10.1016/j.jaap.2014.03.017

    Article  Google Scholar 

  38. Li J, He Y, Inoue Y (2003) Thermal and mechanical properties of biodegradable blends of poly (l -lactic acid) and lignin. Polym Int 955:949–955. https://doi.org/10.1002/pi.1137

    Article  Google Scholar 

  39. Jaggi HS, Kumar Y, Satapathy BK, Ray AR, Patnaik A (2012) Analytical interpretations of structural and mechanical response of high density polyethylene/hydroxyapatite bio-composites. Mater Des 36:757–766. https://doi.org/10.1016/j.matdes.2011.12.004

    Article  Google Scholar 

  40. Sharma R, Maiti SN (2013) Modification of tensile and impact properties of poly (butylene terephthalate) by incorporation of styrene-ethylene-butylene-styrene and maleic anhydride- grafted -SEBS (SEBS- g -MA) terpolymer. Polym Eng Sci 53(10):2242–2253. https://doi.org/10.1002/pen

    Article  Google Scholar 

  41. Sewda K, Maiti SN (2007) Mechanical properties of HDPE/Bark flour composites. J Appl Polym Sci 105:2598–2604. https://doi.org/10.1002/app.26293

    Article  Google Scholar 

  42. Nielsen LE, Nielsen LE (2017) Mechanical properties of particulate-filled systems. J Compos Mater 16:1–6. https://doi.org/10.1177/002199836700100110

    Article  Google Scholar 

  43. Zhu W, Huang Y, Jun H, Shan D (2012) Preparation and properties of poly (lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends. Chin Chem Lett 23:351–354

    Article  Google Scholar 

  44. Gandhi A, Bhatnagar N (2015) Physical blowing agent residence conditions stimulated morphological transformations in extrusion foaming physical blowing agent residence conditions stimulated Abhishek Gandhi and Naresh Bhatnagar. LPTE 54:1812–1818. https://doi.org/10.1080/03602559.2015.1050518

    Article  Google Scholar 

  45. Wang D (2011) Poly (Lactic Acid) blended with cellulolytic enzyme lignin: mechanical and thermal properties and morphology evaluation poly (Lactic Acid) blended with cellulolytic enzyme lignin: mechanical and thermal properties and morphology Evaluation. J Polym Environ. https://doi.org/10.1007/s10924-011-0359-4

    Article  Google Scholar 

  46. Galeski Z, Kowalczuk A, Sobota M, Malinowski M (2017) Tough blends of poly (lactide) and amorphous poly ([R, S] -3-hydroxy butyrate)—morphology and properties. Eur Polym J 49(11):3630–3641

    Google Scholar 

  47. Kowalczyk M, Piorkowska E, Dutkiewicz S, Sowinski P (2014) Toughening of polylactide by blending with a novel random aliphatic-aromatic copolyester. Eur Polym J 59:59–68. https://doi.org/10.1016/j.eurpolymj.2014.07.002

    Article  Google Scholar 

  48. Evstatiev M, Simeonova S, Friedrich K, Formanek P (2013) MFC-structured biodegradable poly (l-lactide)/poly (butylene adipate-co-terephatalate) blends with improved mechanical and barrier properties. J Mater Sci 48:6312–6330. https://doi.org/10.1007/s10853-013-7431-5

    Article  Google Scholar 

  49. Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452. https://doi.org/10.1016/j.mechmat.2007.10.006

    Article  Google Scholar 

  50. Ohkita T, Lee S (2005) Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017. https://doi.org/10.1002/app.23425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Saha.

Supporting information

Supporting information

The DTG curves of PLA/EVA/TWF composites are shown in Fig. 14 which shows double peaks.

Fig. 14
figure 14

Differential thermogravimetric (DTG) traces of PLA/EVA/TWF composites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullapudi, S.S., Pandey, K., Maiti, S.N. et al. PLA/EVA/Teak Wood Flour Biocomposites for Packaging Application: Evaluation of Mechanical Performance and Biodegradation Properties. J Package Technol Res 2, 191–201 (2018). https://doi.org/10.1007/s41783-018-0037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-018-0037-2

Keywords

Navigation