Skip to main content

Advertisement

Log in

Properties of wood polymer composites based on polypropylene/olive wood flour: effects of fiber treatment and compatibilizer

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this study, wood polymer composites (WPC) were produced by polypropylene (PP) as the matrix material and 30 wt% olive wood flour (OWF) as the filler material, for injection applications. Various treatments of OWF—including single treatment or co-modifications using the silane treatment, heat treatment, and maleic anhydride grafted polypropylene (MAPP) compatibilizer—were used to improve PP/OWF compatibility and mechanical properties. Structural and thermal characterization of the OWF after treatment has been implemented using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). FTIR and energy-dispersive X-ray (EDX) analyses revealed the interactions between OWF and silane coupling agent. Silane and heat treatments increased the thermal stability of OWF. Results of mechanical tests revealed that the OWF increased Young's modulus values of PP/OWF composites with respect to those of pure PP, while their tensile and impact strengths decreased. Moreover, heat and MAPP treatments enhanced the mechanical properties. Heat treatment introduced higher toughness in PP/OWF composites compared to the other treatments. Scanning electron microscopy (SEM) showed the evidence of the improved interfacial adhesion and consequently mechanical properties of the PP/OWF composites by the used treatments. A further enhancement in mechanical properties was recorded for these wood polymer composites with co-modifications of OWF with MAPP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiao F, Zhu L, Yu L (2020) Evaluation of interfacial compatibility in wood flour/polypropylene composites by using dynamic thermomechanical analysis. Polym Compos 41:3606–3614

    Article  CAS  Google Scholar 

  2. Wang W, Chen H, Li J (2021) Effects of maleic anhydride grafted polypropylene on the physical, mechanical and flammability properties of wood-flour/polypropylene/ammonium polyphosphate composites. Fibers Polym 22:1137–1144

    Article  CAS  Google Scholar 

  3. Asim M, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M, Siakeng R (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J 29:625–648

    Article  CAS  Google Scholar 

  4. Sobczak L, Brüggemann O, Putz RF (2013) Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. J Appl Polym Sci 127:1–17

    Article  CAS  Google Scholar 

  5. La Mantia FP, Morreale M (2008) Accelerated weathering of polypropylene/wood flour composites. Polym Degrad Stabil 93:1252–1258

    Article  Google Scholar 

  6. Gremmel-Simon H, Fachhochschule Burgenland (2016) Nachhaltige Technologien: Gebäude--Energie--Umwelt: Internationaler Kongress e-nova 2016, 24 und 25 November 2016, Band 20. Leykam, Graz

  7. Ilyas RA, Sapuan SM (2020) Biopolymers and biocomposites: chemistry and technology. CAC 16:500–503

    Article  CAS  Google Scholar 

  8. Chandrasekar M, Ishak MR, Jawaid M, Sapuan SM, Leman Z (2018) Low velocity impact properties of natural fiber-reinforced composite materials for aeronautical applications. In: Jawaid M (ed) Sustainable composites for aerospace applications. Elsevier, Amsterdam

    Google Scholar 

  9. Kian LK, Saba N, Jawaid M, Alothman OY, Fouad H (2020) Properties and characteristics of nanocrystalline cellulose isolated from olive fiber. Carbohydr Polym 241:116423

    Article  CAS  PubMed  Google Scholar 

  10. Bouhamed N, Souissi S, Marechal P, Amar MB, Lenoir O, Leger R, Bergeret A (2020) Ultrasound evaluation of the mechanical properties as an investigation tool for the wood-polymer composites including olive wood flour. Mech Mater 148:103445

    Article  Google Scholar 

  11. Haddar M, Elloumi A, Koubaa A, Bradai C, Migneault S, Elhalouani F (2018) Synergetic effect of Posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high density polyethylene composites. Ind Crops Prod 121:26–35

    Article  CAS  Google Scholar 

  12. Bekhta P, Sedliačik J, Kačík F, Noshchenko G, Kleinová A (2019) Lignocellulosic waste fibers and their application as a component of urea-formaldehyde adhesive composition in the manufacture of plywood. Eur J Wood Prod 77:495–508

    Article  CAS  Google Scholar 

  13. Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crops Prod 70:91–99

    Article  CAS  Google Scholar 

  14. Migneault S, Koubaa A, Perré P (2014) Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood-plastic composites. J Wood Chem Technol 34:241–261

    Article  CAS  Google Scholar 

  15. Fabiyi JS, McDonald AG (2010) Effect of wood species on property and weathering performance of wood plastic composites. Compos Part A Appl Sci Manuf 41:1434–1440

    Article  Google Scholar 

  16. Abdellah Ali SF, Althobaiti IO, El-Rafey E, Gad ES (2021) Wooden polymer composites of poly(vinyl chloride), olive pits flour, and precipitated bio-calcium carbonate. ACS Omega 6:23924–23933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jawaid M, Awad S, Fouad H, Alothman OY, Saba N, Sain M, Leao AL (2022) Olive cellulosic fibre based epoxy composites: thermal and dynamic mechanical properties. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2053266

    Article  Google Scholar 

  18. Sarmin SN, Jawaid M, Awad SA, Saba N, Fouad H, Alothman OY, Sain M (2022) Olive fiber reinforced epoxy composites: dimensional stability, and mechanical properties. Polym Compos 43:358–365

    Article  CAS  Google Scholar 

  19. Siakeng R, Jawaid M, Tahir PMd, Siengchin S, Asim M (2020) Improving the properties of pineapple leaf fibres by chemical treatments. In: Jawaid M, Asim M, Tahir PMd, Nasir M (eds) Pineapple leaf fibers. Springer Singapore, Singapore

    Google Scholar 

  20. Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos B Eng 73:132–138

    Article  CAS  Google Scholar 

  21. Li Y, Zhang J, Cheng P, Shi J, Yao L, Qiu Y (2014) Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate. Ind Crops Prod 61:16–22

    Article  CAS  Google Scholar 

  22. Kaboorani A, Faezipour M, Ebrahimi G (2008) Feasibility of using heat treated wood in wood/thermoplastic composites. J Reinf Plast Compos 27:1689–1699

    Article  CAS  Google Scholar 

  23. Werchefani M, Lacoste C, Elloumi A, Belghith H, Gargouri A, Bradai C (2020) Enzyme-treated Tunisian alfa fibers reinforced polylactic acid composites: an investigation in morphological, thermal, mechanical, and water resistance properties. Polym Compos 41:1721–1735

    Article  CAS  Google Scholar 

  24. George G, M, Mussone PG, Alemaskin K, Chae M, Wolodko J, Bressler DC, (2016) Enzymatically treated natural fibres as reinforcing agents for biocomposite material: mechanical, thermal, and moisture absorption characterization. J Mater Sci 51:2677–2686

    Article  CAS  Google Scholar 

  25. Nachtigall SMB, Cerveira GS, Rosa SML (2007) New polymeric-coupling agent for polypropylene/wood-flour composites. Polym Test 26:619–628

    Article  CAS  Google Scholar 

  26. Kaboorani A (2009) Thermal properties of composites made of heat-treated wood and polypropylene. J Compos Mater 43:2599–2607

    Article  CAS  Google Scholar 

  27. Aydemir D, Alsan M, Altuntas E, Oztel A (2019) Mechanical, thermal and morphological properties of heat-treated wood-polypropylene composites and comparison of the composites with PROMETHEE method. Plast Rubber Compos 48:389–400

    Article  CAS  Google Scholar 

  28. Arbelaiz A, Fernández B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos Part A Appl Sci Manuf 36:1637–1644

    Article  Google Scholar 

  29. Bledzki AK, Faruk O (2004) Creep and impact properties of wood fibre–polypropylene composites: influence of temperature and moisture content. Compos Sci Technol 64:693–700

    Article  CAS  Google Scholar 

  30. Kaewkuk S, Sutapun W, Jarukumjorn K (2013) Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Compos B Eng 45:544–549

    Article  CAS  Google Scholar 

  31. Bouafif H, Koubaa A, Perré P, Cloutier A, Riedl B (2008) Analysis of among-species variability in wood fiber surface using DRIFTS and XPS: effects on esterification efficiency. J Wood Chem Technol 28:296–315

    Article  CAS  Google Scholar 

  32. Migneault S, Koubaa A, Perré P, Riedl B (2015) Effects of wood fiber surface chemistry on strength of wood–plastic composites. Appl Surf Sci 343:11–18

    Article  CAS  Google Scholar 

  33. Li X, Xiao R, Morrell JJ, Wu Z, Du G, Wang S, Zou C, Cappellazzi J (2018) Improving the performance of bamboo and eucalyptus wood fiber/polypropylene composites using pectinase pre-treatments. J Wood Chem Technol 38:44–50

    Article  CAS  Google Scholar 

  34. Dominkovics Z, Dányádi L, Pukánszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos Part A Appl Sci Manuf 38:1893–1901

    Article  Google Scholar 

  35. Cui Y, Lee S, Noruziaan B, Cheung M, Tao J (2008) Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos Part A Appl Sci Manuf 39:655–661

    Article  Google Scholar 

  36. Wang X, Cui Y, Xu Q, Xie B, Li W (2010) Effects of alkali and silane treatment on the mechanical properties of jute-fiber-reinforced recycled polypropylene composites. J Vinyl Addit Technol 16:183–188. https://doi.org/10.1002/vnl.20230

    Article  CAS  Google Scholar 

  37. Es-haghi H, Mirabedini SM, Imani M, Farnood RR (2014) Preparation and characterization of pre-silane modified ethyl cellulose-based microcapsules containing linseed oil. Colloids Surf A Physicochem Eng Asp 447:71–80

    Article  CAS  Google Scholar 

  38. Karabacak M, Kurt M, Çınar M, Çoruh A (2009) Experimental (UV, NMR, IR and Raman) and theoretical spectroscopic properties of 2-chloro-6-methylaniline. Mol Phys 107:253–264

    Article  CAS  Google Scholar 

  39. Meng F, Yu Y, Zhang Y, Yu W, Gao J (2016) Surface chemical composition analysis of heat-treated bamboo. Appl Surf Sci 371:383–390

    Article  CAS  Google Scholar 

  40. Sobral Hilário L, Batista dos Anjos R, de Moraes B, Juviniano H, da Silva DROD (2019) Evaluation of thermally treated Calotropis procera fiber for the removal of crude oil on the water surface. Materials 12:3894

    Article  PubMed Central  Google Scholar 

  41. Rosu D, Teaca C-A, Bodirlau R, Rosu L (2010) FTIR and color change of the modified wood as a result of artificial light irradiation. J Photochem Photobiol B 99:144–149

    Article  CAS  PubMed  Google Scholar 

  42. Srisuwan L, Jarukumjorn K, Suppakarn N (2018) Effect of silane treatment methods on physical properties of rice husk flour/natural rubber composites. Adv Mater Sci Eng 2018:1–14

    Google Scholar 

  43. Zhuang J, Li M, Pu Y, Ragauskas A, Yoo C (2020) Observation of potential contaminants in processed biomass using Fourier transform infrared spectroscopy. Appl Sci 10:4345

    Article  CAS  Google Scholar 

  44. Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969

    Article  Google Scholar 

  45. Chen Y, Tshabalala MA, Gao J, Stark NM, Fan Y (2014) Color and surface chemistry changes of extracted wood flour after heating at 120 °C. Wood Sci Technol 48:137–150

    Article  CAS  Google Scholar 

  46. Yu J, Ramirez Reina T, Paterson N, Millan M (2022) On the primary pyrolysis products of torrefied oak at extremely high heating rates in a wire mesh reactor. Appl Energy Combust Sci 9:100046

    Google Scholar 

  47. Wondu E, Lule ZC, Kim J (2020) Fabrication of aliphatic water-soluble polyurethane composites with silane treated CaCO3. Polymers 12:747

    Article  CAS  PubMed Central  Google Scholar 

  48. Chen Z, Hu TQ, Jang HF, Grant E (2015) Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohyd Polym 127:418–426

    Article  CAS  Google Scholar 

  49. Azizan A, Jusri NAA, Azmi IS, Abd Rahman MF, Ibrahim N, Jalil R (2022) Emerging lignocellulosic ionic liquid biomass pretreatment criteria/strategy of optimization and recycling short review with infrared spectroscopy analytical know-how. Mater Today Proc 63:S359–S367

    Article  CAS  Google Scholar 

  50. Tee YB, Talib RA, Abdan K, Chin NL, Basha RK, Yunos KFM (2013) Thermally grafting aminosilane onto kenaf-derived cellulose and its influence on the thermal properties of poly(lactic acid) composites. BioResources 8:4468–4483

    Article  Google Scholar 

  51. Popescu C-M, Popescu M-C, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61:1168–1177

    Article  CAS  PubMed  Google Scholar 

  52. Verheyen S, Blaton N, Kinget R, Kim H-S (2004) Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim 76:395–404

    Article  Google Scholar 

  53. Lu N, Oza S (2013) Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Compos B Eng 44:484–490

    Article  CAS  Google Scholar 

  54. Rojo E, Alonso MV, Oliet M, Del Saz-Orozco B, Rodriguez F (2015) Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos B Eng 68:185–192

    Article  CAS  Google Scholar 

  55. Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23

    Article  CAS  Google Scholar 

  56. Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 82:39–45

    Article  CAS  Google Scholar 

  57. Aydemir D, Kiziltas A, Erbas Kiziltas E, Gardner DJ, Gunduz G (2015) Heat treated wood–nylon 6 composites. Compos B Eng 68:414–423

    Article  CAS  Google Scholar 

  58. Ogunsona EO, Misra M, Mohanty AK (2017) Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers. J Appl Polym Sci 134:44221

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Polymers, Composites, and Hybrids (PCH) team of the Materials Center of IMT Mines Alès (C2MA), France for donating the necessary raw materials and instruments. They would also like to thank Dr. H. Souissi (Assistant Professor of English language at Imam Ibn Saud Islamic University) for a grant support to edit the language for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slim Souissi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souissi, S., Lachtar, F., Elloumi, A. et al. Properties of wood polymer composites based on polypropylene/olive wood flour: effects of fiber treatment and compatibilizer. Iran Polym J 31, 1511–1521 (2022). https://doi.org/10.1007/s13726-022-01089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01089-x

Keywords

Navigation