Skip to main content

Advertisement

Log in

Responsive Systems in Food Packaging

  • Review Paper
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

Responsive packaging systems can adapt to surrounding environments or react to stimuli in the food and/or regulate transport of encapsulated actives/nutrition in presence of external stimuli. It also converts chemical and biochemical signals into optical, electrical, mechanical signals etc. To allow real time food safety and quality monitoring along with extension of shelf-life of food products. These packaging systems are currently an emerging area in food packaging research and playing an increasingly important part in a diverse range of applications, such as nutrition delivery in controlled fashion, ‘on demand’ active delivery, spoilage indicators etc. This paper gives an overview of recent developments and challenges on the applications of stimuli-responsive materials towards food packaging area. We also highlight the future directions to convert research outcome into commercial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44:185–193. doi:10.1080/10408690490441578

    Article  Google Scholar 

  2. Hutton T (2003) Food packaging: an introduction. Key topics in food science and technology, vol 7. Campden and Chorleywood Food Research Association Group, Chipping Campden, p 108

    Google Scholar 

  3. Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70:R1–R10. doi:10.1111/j.1365-2621.2005.tb09052.x

    Article  Google Scholar 

  4. Coles R, McDowell D, Kirwan MJ (2003) Food packaging technology. CRC Press, Boca Raton

    Google Scholar 

  5. Kerry JP, O’Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74:113–130. doi:10.1016/j.meatsci.2006.04.024

    Article  Google Scholar 

  6. Liu F, Jiang Y, Du B, Chai Z, Jiao T, Zhang C et al (2013) Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes. J Agric Food Chem 61:5824–5833. doi:10.1021/jf4009923

    Article  Google Scholar 

  7. Debeaufort F, Voilley A (1994) Aroma compound and water vapor permeability of edible films and polymeric packagings. J Agric Food Chem 42:2871–2875. doi:10.1021/jf00048a041

    Article  Google Scholar 

  8. Silva-Pereira MC, Teixeira JA, Pereira-Júnior VA, Stefani R (2015) Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT Food Sci Technol 61:258–262. doi:10.1016/j.lwt.2014.11.041

    Article  Google Scholar 

  9. Pacquit A, Frisby J, Diamond D, Lau KT, Farrell A, Quilty B et al (2007) Development of a smart packaging for the monitoring of fish spoilage. Food Chem 102:466–470. doi:10.1016/j.foodchem.2006.05.052

    Article  Google Scholar 

  10. Kuswandi B, Jayus R, Oktaviana A, Abdullah Heng LY (2014) A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packag Technol Sci 27:69–81. doi:10.1002/pts.2016

    Article  Google Scholar 

  11. Yoshida CMP, Maciel VBV, Mendonça MED, Franco TT (2010) Chitosan biobased and intelligent films: monitoring pH variations. LWT Food Sci Technol 55:83–89. doi:10.1016/j.lwt.2013.09.015

    Article  Google Scholar 

  12. Gillanders RN, Arzhakova OV, Hempel A, Dolgova A, Kerry JP, Yarysheva LM et al (2010) Phosphorescent oxygen sensors based on nanostructured polyolefin substrates. Anal Chem 82:466–468. doi:10.1021/ac902406w

    Article  Google Scholar 

  13. Zhou H et al (2009) Thermo-sensitive polyurethane membrane with controllable water vapor permeation for food packaging. Macromol Res 17(7):528–532. doi:10.1007/BF03218902

    Article  Google Scholar 

  14. Ghaani EAM (2016) An overview of the intelligent packaging technologies in the food sector. Trends Food Sci Technol 51:1–11. doi:10.1016/j.tifs.2016.02.008

    Article  Google Scholar 

  15. Fuciños C, Fuciños P, Pastrana LM, Rúa ML (2014) Functional characterization of poly(N-isopropylacrylamide) nanohydrogels for the controlled release of food preservatives. Food Bioprocess Technol 7:3429–3441. doi:10.1007/s11947-014-1351-5

    Article  Google Scholar 

  16. Fuciños C, Guerra NP, Teijón JM, Pastrana LM, Rúa ML, Katime I (2012) Use of poly(N-isopropylacrylamide) nanohydrogels for the controlled release of pimaricin in active packaging. J Food Sci 77:N21–N28. doi:10.1111/j.1750-3841.2012.02781.x

    Article  Google Scholar 

  17. Elsaeed SM, Farag RK, Maysour NS (2012) Synthesis and characterization of pH-sensitive crosslinked (NIPA-co-AAC) nanohydrogels copolymer. J Appl Polym Sci 124(3):1947–1955. doi:10.1371/journal.pone.0087190

    Article  Google Scholar 

  18. Herzer N et al (2012) Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks. J Am Chem Soc 134(18):7608–7611. doi:10.1021/ja301845n

    Article  Google Scholar 

  19. Goh TK et al (2011) Nanoengineered films via surface-confined continuous assembly of polymers. Small 7(20):2863–2867. doi:10.1002/smll.201101368

    Article  Google Scholar 

  20. Guntari SN, Goh TK, Blencowe A, Caruso F, Wong EHH, Qiao GG (2013) Factors influencing the growth and topography of nanoscale films fabricated by romp-mediated continuous assembly of polymers. Polym Chem 4:68–75. doi:10.1039/C2PY20692G

    Article  Google Scholar 

  21. Tan EAS (2016) Photocontrolled cargo release from dual cross-linked polymer particles. ACS Appl Mater Interfaces 8:6219–6228. doi:10.1021/acsami.5b11186

    Article  Google Scholar 

  22. Lampert CM, Granqvist CG (1990) Large-area chromogenics: materials and devices for transmittance control. In: The international society for optical engineering, Bellingham, WA, United States, vol IS 4. SPIE

  23. Pursiainen OLJ, Baumberg JJ, Winkler H, Viel B, Spahn P, Ruhl T (2007) Nanoparticle-tuned structural color from polymer opals. Opt Express 15:9553–9561. doi:10.1364/OE.15.009553

    Article  Google Scholar 

  24. Borisov SM et al (2007) Optical carbon dioxide sensors based on silicone-encapsulated room-temperature ionic liquids. Chem Mater 19(25):6187–6194. doi:10.1021/cm7019312

    Article  Google Scholar 

  25. Borchert NB, Kerry JP, Papkovsky DB (2013) A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sens Actuators B Chem 176:157–165. doi:10.1016/j.snb.2012.09.043

    Article  Google Scholar 

  26. Cavallo JA, Strumia MC, Gomez CG (2014) Preparation of a milk spoilage indicator adsorbed to a modified polypropylene film as an attempt to build a smart packaging. J Food Eng 136:48–55. doi:10.1016/j.jfoodeng.2014.03.021

    Article  Google Scholar 

  27. Lai WC, Dixit NS, Mackay RA (1984) Formation of H aggregates of thionine dye in water. J Phys Chem 88(22):5364–5368

    Article  Google Scholar 

  28. Kay RE, Walwick ER, Gifford CK (1964) Spectral changes in a cationic dye due to interaction with macromolecules. I. Behavior of dye alone in solution and the effect of added macromolecules. J Phys Chem 68(7):1896–1906

    Article  Google Scholar 

  29. Vu CHT, Won K (2013) Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chem 140(1):52–56. doi:10.1016/j.foodchem.2013.02.056

    Article  Google Scholar 

  30. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47. doi:10.1007/s11947-010-0328-2

    Article  Google Scholar 

  31. Pires ACdS, Soares NdFF, Silva LHMd, Silva MdCHd, Almeida MVD, Hyaric ML et al (2011) A colorimetric biosensor for the detection of foodborne bacteria. Sens Actuators B Chem 153:17–23. doi:10.1016/j.snb.2010.09.069

    Article  Google Scholar 

  32. Buonocore GG, Conte A, Corbo MR, Sinigaglia M, Del Nobile MA (2005) Mono- and multilayer active films containing lysozyme as antimicrobial agent. Innov Food Sci Emerg Technol 6:459–464. doi:10.1016/j.ifset.2005.05.006

    Article  Google Scholar 

  33. Mousavi SA, Lenk A, Fawcett S (2002) Tracking and traceability in the meat processing industry: a solution. Br Food J104:7–19. doi:10.1108/00070700210418703

    Article  Google Scholar 

  34. Yam PTTKL, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):R1–R10. doi:10.1111/j.1365-2621.2005.tb09052.x

    Article  Google Scholar 

  35. Brockgreitens J, Abbas A (2016) Responsive food packaging: recent progress and technological prospects. Compr Rev Food Sci Food Saf 15(1):3–15. doi:10.1111/1541-4337.12174

    Article  Google Scholar 

  36. Fiddes LK, Chang J, Yan N (2014) Electrochemical detection of biogenic amines during food spoilage using an integrated sensing RFID tag. Sens Actuators B Chem 202:1298–1304. doi:10.1016/j.snb.2014.05.106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purkayastha, S., Biswal, A.K. & Saha, S. Responsive Systems in Food Packaging. J Package Technol Res 1, 53–64 (2017). https://doi.org/10.1007/s41783-017-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-017-0007-0

Keywords

Navigation