Skip to main content
Log in

Functional Characterization of Poly(N-isopropylacrylamide) Nanohydrogels for the Controlled Release of Food Preservatives

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In most active packaging systems for food applications, the preservative release is uncontrolled and frequently ineffective due to excessive or insufficient preservative concentration in the food matrix at a particular time. This work was aimed to evaluate the usefulness of pH- and temperature-sensitive poly(N-isopropylacrylamide) nanohydrogels for developing smart delivery systems to release preservatives as a response to environmental triggers. Pimaricin was used as a model preservative. Loading and release efficiencies were studied as a function of incorporation time and nanohydrogels composition, that differed in the cross-linker and acrylic acid content. Pimaricin loading efficiency was not affected by the acrylic acid. However, the cross-linking degree and incorporation time had a great influence. The lower the cross-linker content, the higher the loading efficiency, which in all cases exceeded 70 % at 12 h, approaching 100 % after 60 h of incorporation. No significant differences were observed between loading efficiencies obtained using water or methanol for pimaricin solubilisation. On the other hand, pimaricin release was dependent on the gel collapse, determined by the gel composition. Increasing the cross-linker content enhanced the nanoparticles' rigidity, and inclusion of acrylic acid as comonomer promoted strong electrostatic repulsions among the polymer chains. In both cases, the collapse was hampered, leading to a more hydrated collapsed state that favoured a sustained release of pimaricin. A mathematical model was also developed to predict the pimaricin release as a function of pH, temperature and storage time, allowing to select the most suitable nanohydrogel for a specific food application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuja, N., Katare, O. P., & Singh, B. (2007). Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. European Journal of Pharmaceutics and Biopharmaceutics, 65(1), 26–38.

    Article  CAS  Google Scholar 

  • Blanco, M. D., Guerrero, S., Teijón, C., Olmo, R., Pastrana, L., Katime, I., et al. (2008). Preparation and characterization of nanoparticulate poly(N-isopropylacrylamide) hydrogel for the controlled release of anti-tumour drugs. Polymer International, 57(11), 1215–1225.

    Article  CAS  Google Scholar 

  • Blanco, M. D., Benito, M., Olmo, R., Teijón, C., Pérez, E., Katime, I., et al. (2012). Synthesis and in vitro biological evaluation as antitumour drug carriers of folate-targeted N-isopropylacrylamide-based nanohydrogels. Polymer International, 61(7), 1202–1212.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Costa, M. J., Fuciños, C., Pastrana, L. M., & Vicente, A. A. (2013). Development of active and nanotechnology-based smart edible packaging systems: physical–chemical characterization. Food and Bioprocess Technology. doi:10.1007/s11947-013-1117-5. in press.

    Google Scholar 

  • Chen, H., Gu, Y., & Hu, Y. (2008a). Comparison of two polymeric carrier formulations for controlled release of hydrophilic and hydrophobic drugs. Journal of Materials Science. Materials in Medicine, 19(2), 651–658.

    Article  Google Scholar 

  • Chen, H., Liu, L., Wang, L., Ching, C., Yu, H., & Yang, Y. (2008b). Thermally responsive reversed micelles for immobilization of enzymes. Advanced Functional Materials, 18(1), 95–102.

    Article  CAS  Google Scholar 

  • Cordeiro, A. L., Zimmermann, R., Gramm, S., Nitschke, M., Janke, A., Schäfer, N., et al. (2009). Temperature dependent physicochemical properties of poly(N- isopropylacrylamide-co-N-(1-phenylethyl) acrylamide) thin films. Soft Matter, 5(7), 1367–1377.

    Article  CAS  Google Scholar 

  • Coughlan, D. C., & Corrigan, O. I. (2008). Release kinetics of benzoic acid and its sodium salt from a series of poly(N-isopropylacrylamide) matrices with various percentage crosslinking. Journal of Pharmaceutical Sciences, 97(1), 318–330.

    Article  CAS  Google Scholar 

  • De Oliveira, T. M., De Fátima Ferreira Soares, N., Pereira, R. M., & De Freitas, F. K. (2007). Development and evaluation of antimicrobial natamycin-incorporated film in gorgonzola cheese conservation. Packaging Technology and Science, 20(2), 147–153.

    Article  Google Scholar 

  • Eeckman, F., Moës, A. J., & Amighi, K. (2004). Poly(N-isopropylacrylamide) copolymers for constant temperature controlled drug delivery. International Journal of Pharmaceutics, 273(1–2), 109–119.

    Article  CAS  Google Scholar 

  • Elsaeed, S. M., Farag, R. K., & Maysour, N. S. (2012). Synthesis and characterization of pH-sensitive crosslinked (NIPA-co-AAC) nanohydrogels copolymer. Journal of Applied Polymer Science, 124(3), 1947–1955.

    Article  CAS  Google Scholar 

  • Fajardo, P., Martins, J. T., Fuciños, C., Pastrana, L., Teixeira, J. A., & Vicente, A. A. (2010). Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering, 101(4), 349–356.

    Article  CAS  Google Scholar 

  • Fuciños, C., Guerra, N. P., Teijón, J. M., Pastrana, L. M., Rúa, M. L., & Katime, I. (2012). Use of poly(N-isopropylacrylamide) nanohydrogels for the controlled release of pimaricin in active packaging. Journal of Food Science, 77(7), N21–N28.

    Article  Google Scholar 

  • Fuciños C, Fuciños P, Míguez M, Katime I, Pastrana LM & Rúa ML (2014) Temperature- and pH-sensitive nanohydrogels of poly(N-isopropylacrylamide) for food packaging applications: Modelling the Swelling-Collapse Behaviour. PLoS ONE 9(2): e87190. doi:10.1371/journal.pone.0087190

  • Fundueanu, G., Constantin, M., Stanciu, C., Theodoridis, G., & Ascenzi, P. (2009). pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release. Journal of Materials Science. Materials in Medicine, 20(12), 2465–2475.

    Article  CAS  Google Scholar 

  • Green, S., Roldo, M., Douroumis, D., Bouropoulos, N., Lamprou, D., & Fatouros, D. G. (2009). Chitosan derivatives alter release profiles of model compounds from calcium phosphate implants. Carbohydrate Research, 344(7), 901–907.

    Article  CAS  Google Scholar 

  • Guerra, N. P., Macías, C. L., Agrasar, A. T., & Castro, L. P. (2005). Development of a bioactive packaging cellophane using Nisaplin® as biopreservative agent. Letters in Applied Microbiology, 40(2), 106–110.

    Article  CAS  Google Scholar 

  • Gutowska, A., Bae, Y. H., Jacobs, H., Mohammad, F., Mix, D., Feijen, J., et al. (1995). Heparin release from thermosensitive polymer coatings: In vivo studies. Journal of Biomedical Materials Research, 29(7), 811–821.

    Article  CAS  Google Scholar 

  • Hanušová, K., Šťastná, M., Votavová, L., Klaudisová, K., Dobiáš, J., Voldřich, M., et al. (2010). Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: Nisin and natamycin migration, efficiency in cheese packaging. Journal of Food Engineering, 99(4), 491–496.

    Article  Google Scholar 

  • Howard, K. A., Dong, M., Oupicky, D., Bisht, H. S., Buss, C., Besenbacher, F., et al. (2007). Nanocarrier stimuli-activated gene delivery. Small, 3(1), 54–57.

    Article  CAS  Google Scholar 

  • Kurisawa, M., Yokoyama, M., & Okano, T. (2000). Gene expression control by temperature with thermo-responsive polymeric gene carriers. Journal of Controlled Release, 69(1), 127–137.

    Article  CAS  Google Scholar 

  • Lin, C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(12–13), 1379–1408.

    Article  CAS  Google Scholar 

  • López, C., Torrado, A., Fuciños, P., Guerra, N. P., & Pastrana, L. (2004). Enzymatic hydrolysis of chestnut purée: process optimization using mixtures of α-amylase and glucoamylase. Journal of Agricultural and Food Chemistry, 52(10), 2907–2914.

    Article  Google Scholar 

  • Milainović, N., Milosavljević, N., Filipović, J., Kneević-Jugović, Z., & Kruić, M. K. (2010). Synthesis, characterization and application of poly(N-isopropylacrylamide-co-itaconic acid) hydrogels as supports for lipase immobilization. Reactive and Functional Polymers, 70(10), 807–814.

    Article  Google Scholar 

  • Milašinović, N., Kalagasidis Krušić, M., Knežević-Jugović, Z., & Filipović, J. (2010). Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. International Journal of Pharmaceutics, 383(1–2), 53–61.

    Google Scholar 

  • Nayak, S., Bhattacharjee, S., & Chaudhary, Y. S. (2012). In situ encapsulation and release kinetics of pH and temperature responsive nanogels. Journal of Physical Chemistry C, 116(1), 30–36.

    Article  CAS  Google Scholar 

  • Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.

    Article  CAS  Google Scholar 

  • Pintado, C. M. B. S., Ferreira, M. A. S. S., & Sousa, I. (2010). Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control, 21(3), 240–246.

    Article  CAS  Google Scholar 

  • Raab, W. (1972). Natamycin (Pimaricin): its properties and possibilities in medicine. Stuttgart, Germany: Georg Thieme Publishers.

    Google Scholar 

  • Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release: II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1), 37–42.

    Article  CAS  Google Scholar 

  • Schild, H. G. (1992). Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science (Oxford), 17(2), 163–249.

    Article  CAS  Google Scholar 

  • Tankhiwale, R., & Bajpai, S. K. (2010). Silver-nanoparticle-loaded chitosan lactate films with fair antibacterial properties. Journal of Applied Polymer Science, 115(3), 1894–1900.

    Article  CAS  Google Scholar 

  • Tokuyama, H., & Kato, Y. (2008). Preparation of poly(N-isopropylacrylamide) emulsion gels and their drug release behaviors. Colloids and Surfaces B: Biointerfaces, 67(1), 92–98.

    Article  CAS  Google Scholar 

  • Türe, H., Eroǧlu, E., Özen, B., & Soyer, F. (2009). Physical properties of biopolymers containing natamycin and rosemary extract. International Journal of Food Science and Technology, 44(2), 402–408.

    Article  Google Scholar 

  • Vermeiren, L., Devlieghere, F., Van Beest, M., De Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10(3), 77–86.

    Article  CAS  Google Scholar 

  • Weiss, J., Takhistov, P., & McClements, D. J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9).

  • Wu, J., Liu, S., Heng, P. W., & Yang, Y. (2005). Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels. Journal of Controlled Release, 102(2), 361–372.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhuo, R., Cui, J., & Zhang, J. (2002). A novel thermo-responsive drug delivery system with positive controlled release. International Journal of Pharmaceutics, 235(1–2), 43–50.

    Article  CAS  Google Scholar 

  • Zhu, P. W., & Napper, D. H. (1996). Coil-to-Globule type transitions and swelling of poly(N-isopropylacrylamide) and poly(acrylamide) at latex interfaces in alcohol–water mixtures. Journal of Colloid and Interface Science, 177(article no. 0042), 343–352.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grant (MAT 2006-11662-CO3-CO2-C01/MAT 2010-21509-C03-01/EUI 2008-00115) from the “Ministerio de Educación y Ciencia” (Spain). Clara Fuciños gratefully acknowledge her Pos-Doctoral grant (SFRH/BPD/87910/2012) to the Fundação para a Ciência e Tecnologia (FCT, Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Fuciños.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 52 kb)

ESM 2

(DOC 207 kb)

ESM 3

(DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuciños, C., Fuciños, P., Pastrana, L.M. et al. Functional Characterization of Poly(N-isopropylacrylamide) Nanohydrogels for the Controlled Release of Food Preservatives. Food Bioprocess Technol 7, 3429–3441 (2014). https://doi.org/10.1007/s11947-014-1351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1351-5

Keywords

Navigation