Skip to main content
Log in

Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) has attracted considerable attention due to its special structure and properties, such as its good chemical and thermal stability under ambient conditions, low cost and non-toxicity, and facile synthesis. Recently, g-C3N4-based sensors have been demonstrated to be of high interests in the areas of sensing due to the unique optical, electronic and catalytic properties of g-C3N4. This review focuses on the most salient advances in luminescent sensors based on g-C3N4, chemiluminescence, cataluminescence and electrochemiluminescence methods are discussed. This review provides valuable information for researchers of related areas and thus may inspire the development of more practical and effective approaches for designing two-dimensional (2D) nanomaterial-assisted luminescent sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission [6]

Fig. 2

Reprinted with permission [64]

Fig. 3

Reprinted with permission [63]

Fig. 4

Reprinted with permission [70]

Fig. 5

Reprinted with permission [106]

Fig. 6

Reprinted with permission [116]

Fig. 7

Reprinted with permission [118]

Fig. 8

Reprinted with permission [120]

Fig. 9

Reprinted with permission [124]

Fig. 10

Reprinted with permission [130]

Fig. 11

Reprinted with permission [151]

Fig. 12

Reprinted with permission [157]

Similar content being viewed by others

References

  1. Liebig J. Uber einige stickstoff-verbindungen. Eur J Organic Chem. 1834;10(1):1–47.

    Google Scholar 

  2. Gmelin L. Ueber einige Verbindungen des Melon’s. Eur J Organic Chem. 1835;15(3):252–8.

    Google Scholar 

  3. Liu AY, Cohen ML. Prediction of new low compressibility solids. Science. 1989;245(4920):841–2.

    Article  CAS  Google Scholar 

  4. Chen MY, Li D, Lin X, Dravid VP, Chung YW, Wong MS, Sproul WD. Analytical electron-microscopy and raman-spectroscopy studies of carbon nitride thin-films. J Vac Sci Technol A. 1993;11(3):521–4.

    Article  CAS  Google Scholar 

  5. Teter DM, Hemley RJ. Low-compressibility carbon nitrides. Science. 1996;271(5245):53–5.

    Article  CAS  Google Scholar 

  6. Thomas A, Fischer A, Goettmann F, Antonietti M, Mueller J-O, Schloegl R, Carlsson JM. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem. 2008;18(41):4893–908.

    Article  CAS  Google Scholar 

  7. Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman AD. Tri-s-triazine derivatives. Part i. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J Chem. 2002;26(5):508–12.

    Article  CAS  Google Scholar 

  8. Zheng WX, Wong NB, Liang XQ, Long XP, Tian AM. Theoretical prediction of properties of triazidotri-s-triazine and its azido-tetrazole isomerism. J Phys Chem A. 2004;108(5):840–7.

    Article  CAS  Google Scholar 

  9. Gago R, Jimenez I, Caceres D, Agullo-Rueda F, Sajavaara T, Albella JM, Climent-Font A, Vergara I, Raisanen J, Rauhala E. Hardening mechanisms in graphitic carbon nitride films grown with N2/Ar ion assistance. Chem Mater. 2001;13(1):129–35.

    Article  CAS  Google Scholar 

  10. Wang Y, Wang F, Zuo Y, Zhang X, Cui LF. Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine. Mater Lett. 2014;136:271–3.

    Article  CAS  Google Scholar 

  11. Lu D, Fang P, Wu W, Ding J, Jiang L, Zhao X, Li C, Yang M, Li Y, Wang D. Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(VI) and Rhodamine B under visible light irradiation. Nanoscale. 2017;9(9):3231–45.

    Article  CAS  Google Scholar 

  12. Yu Q, Guo S, Li X, Zhang M. One-step fabrication and high photocatalytic activity of porous graphitic carbon nitride/graphene oxide hybrid by direct polymerization of cyanamide without templates. Russ J Phys Chem A. 2014;88(10):1643–9.

    Article  CAS  Google Scholar 

  13. Yu Q, Li X, Zhang M. One-step fabrication and high photocatalytic activity of porous graphitic carbon nitride synthesised via direct polymerisation of dicyandiamide without templates. Micro Nano Lett. 2014;9(1):1–5.

    Article  CAS  Google Scholar 

  14. Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys a-Mater Sci Process. 2009;94(2):387–92.

    Article  CAS  Google Scholar 

  15. Liu J, Zhang T, Wang Z, Dawson G, Chen W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem. 2011;21(38):14398–401.

    Article  CAS  Google Scholar 

  16. Dong F, Sun Y, Wu L, Fu M, Wu Z. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal Sci Technol. 2012;2(7):1332–5.

    Article  CAS  Google Scholar 

  17. Huang Z, Li F, Chen B, Yuan G. Nanosheets of graphitic carbon nitride as metal-free environmental photocatalysts. Catal Sci Technol. 2014;4(12):4258–64.

    Article  CAS  Google Scholar 

  18. Long B, Lin J, Wang X. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J Mater Chem A. 2014;2(9):2942–51.

    Article  CAS  Google Scholar 

  19. Tian J, Liu Q, Asiri AM, Al-Youbi AO, Sun X. Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal Chem. 2013;85(11):5595–9.

    Article  CAS  Google Scholar 

  20. Tian J, Liu Q, Ge C, Xing Z, Asiri AM, Al-Youbi AO, Sun X. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale. 2013;5(19):8921–4.

    Article  CAS  Google Scholar 

  21. Tian J, Liu Q, Asiri AM, Alamry KA, Sun X. Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem. 2014;7(8):2125–30.

    Article  CAS  Google Scholar 

  22. Yan H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem Commun. 2012;48(28):3430–2.

    Article  CAS  Google Scholar 

  23. Yang Z, Zhang Y, Schnepp Z. Soft and hard templating of graphitic carbon nitride. J Mater Chem A. 2015;3(27):14081–92.

    Article  CAS  Google Scholar 

  24. Xie RL, Zong ZM, Liu FJ, Wang YG, Yan HL, Wei ZH, Mayyas M, Wei X-Y. Nitrogen-doped porous carbon foams prepared from mesophase pitch through graphitic carbon nitride nanosheet templates. RSC Adv. 2015;5(57):45718–24.

    Article  CAS  Google Scholar 

  25. Song Z, Lin T, Lin L, Lin S, Fu F, Wang X, Guo L. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew Chemie-Int Ed. 2016;55(8):2773–7.

    Article  CAS  Google Scholar 

  26. Zhan Y, Liu Z, Liu Q, Huang D, Wei Y, Hu Y, Lian X, Hu C. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J Chem. 2017;41(10):3930–8.

    Article  CAS  Google Scholar 

  27. Li H, Shao FQ, Huang H, Feng JJ, Wang AJ. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens Actuators B Chem. 2016;226:506–11.

    Article  CAS  Google Scholar 

  28. Barman S, Sadhukhan M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem. 2012;22(41):21832–7.

    Article  CAS  Google Scholar 

  29. Liu L, Ma D, Zheng H, Li X, Cheng M, Bao X. Synthesis and characterization of microporous carbon nitride. Microporous Mesoporous Mater. 2008;110(2–3):216–22.

    Article  CAS  Google Scholar 

  30. Chen X, Jun YS, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem Mater. 2009;21(18):4093–5.

    Article  CAS  Google Scholar 

  31. Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M, Domen K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C. 2009;113(12):4940–7.

    Article  CAS  Google Scholar 

  32. Zhu J, Wei Y, Chen W, Zhao Z, Thomas A. Graphitic carbon nitride as a metal-free catalyst for no decomposition. Chem Commun. 2010;46(37):6965–7.

    Article  CAS  Google Scholar 

  33. Tian J, Ning R, Liu Q, Asiri AM, Al-Youbi AO, Sun X. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl Mater Interfaces. 2014;6(2):1011–7.

    Article  CAS  Google Scholar 

  34. Ayan-Varela M, Villar-Rodil S, Paredes JI, Munuera JM, Pagan A, Lozano-Perez AA, Cenis JL, Martinez-Aonso A, Tascon JMD. Investigating the dispersion behavior in solvents, biocompatibility, and use as support for highly efficient metal catalysts of exfoliated graphitic carbon nitride. ACS Appl Mater Interfaces. 2015;7(43):24032–45.

    Article  CAS  Google Scholar 

  35. Ma TY, Tang Y, Dai S, Qiao SZ. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small. 2014;10(12):2382–9.

    Article  CAS  Google Scholar 

  36. Tian J, Liu Q, Asiri AM, Qusti AH, Al-Youbi AO, Sun X. Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale. 2013;5(23):11604–9.

    Article  CAS  Google Scholar 

  37. Zhang M, Nakayama Y, Harada S. Photoluminescence of hydrogenated amorphous carbon nitride films after ultraviolet light irradiation and thermal annealing. J Appl Phys. 1999;86(9):4971–7.

    Article  CAS  Google Scholar 

  38. Miller DR, Wang JJ, Gillan EG. Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J Mater Chem. 2002;12(8):2463–9.

    Article  CAS  Google Scholar 

  39. Wang JJ, Miller DR, Gillan EG. Photoluminescent carbon nitride films grown by vapor transport of carbon nitride powders. Chem Commun. 2002;19:2258–9.

    Article  CAS  Google Scholar 

  40. Tang Y, Song H, Su Y, Lv Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem. 2013;85(24):11876–84.

    Article  CAS  Google Scholar 

  41. Liu J, Wang H, Antonietti M. Graphitic carbon nitride “reloaded’’: emerging applications beyond (photo)catalysis. Chem Soc Rev. 2016;45(8):2308–26.

    Article  CAS  Google Scholar 

  42. Dong Y, Wang Q, Wu H, Chen Y, Lu C-H, Chi Y, Yang H-H. Graphitic carbon nitride materials: sensing, imaging and therapy. Small. 2016;12(39):5376–93.

    Article  CAS  Google Scholar 

  43. Zhu C, Du D, Lin Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron. 2017;89:43–55.

    Article  CAS  Google Scholar 

  44. Adam W, Kazakov DV, Kazakov VP. Singlet-oxygen chemiluminescence in peroxide reactions. Chem Rev. 2005;105(9):3371–87.

    Article  CAS  Google Scholar 

  45. Petrikaln A. The chemi-luminescence and the energy conversions in the oxidation of phosphorous. Z Angew Phys. 1924;22:119–26.

    CAS  Google Scholar 

  46. Rideal EK. Chemiluminescence. Nature. 1929;123:417–9.

    Article  Google Scholar 

  47. Lin Z, Xue W, Chen H, Lin J-M. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem. 2011;83(21):8245–51.

    Article  CAS  Google Scholar 

  48. Liu J, Chen H, Lin Z, Lin J-M. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem. 2010;82(17):7380–6.

    Article  CAS  Google Scholar 

  49. Huang YM, Zhang C, Zhang XR, Zhang ZJ. Chemiluminescence of sulfite based on auto-oxidation sensitized by Rhodamine 6G. Anal Chim Acta. 1999;391(1):95–100.

    Article  CAS  Google Scholar 

  50. Lan D, Li B, Zhang Z. Chemiluminescence flow biosensor for glucose based on gold nano particle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron. 2008;24(4):934–8.

    Article  CAS  Google Scholar 

  51. Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as a diagnostic tool. A review. Talanta. 2000;51(3):415–39.

    Article  CAS  Google Scholar 

  52. Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal Chem. 2004;76(7):2152–6.

    Article  CAS  Google Scholar 

  53. Yakovleva J, Davidsson R, Lobanova A, Bengtsson M, Eremin SA, Laurell T, Emneus J. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem. 2002;74(13):2994–3004.

    Article  CAS  Google Scholar 

  54. Zhang ZF, Cui H, Lai CZ, Liu LJ. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem. 2005;77(10):3324–9.

    Article  CAS  Google Scholar 

  55. Aboul-Enein HY, Stefan RI, van Staden JF, Zhang XR, Garcia-Campana AM, Baeyens WRG. Recent developments and applications of chemiluminescence sensors. Crit Rev Anal Chem. 2000;30(4):271–89.

    Article  CAS  Google Scholar 

  56. Zhang ZY, Zhang SC, Zhang XR. Recent developments and applications of chemiluminescence sensors. Anal Chim Acta. 2005;541(1–2):37–47.

    Article  CAS  Google Scholar 

  57. Bi S, Yan Y, Yang X, Zhang S. Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem A Eur J. 2009;15(18):4704–9.

    Article  CAS  Google Scholar 

  58. Haghighi B, Bozorgzadeh S. Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles. Microchem J. 2010;95(2):192–7.

    Article  CAS  Google Scholar 

  59. Huang X, Ren J. Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. TRAC Trends Anal Chem. 2012;40:77–89.

    Article  CAS  Google Scholar 

  60. Li Q, Zhang L, Li J, Lu C. Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TRAC Trends Anal Chem. 2011;30(2):401–13.

    Article  CAS  Google Scholar 

  61. Su Y, Lv Y. Graphene and graphene oxides: recent advances in chemiluminescence and electrochemiluminescence. RSC Adv. 2014;4(55):29324–39.

    Article  CAS  Google Scholar 

  62. Su Y, Xie Y, Hou X, Lv Y. Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence. Appl Spectrosc Rev. 2014;49(3):201–32.

    Article  CAS  Google Scholar 

  63. Iranifam M. Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TRAC Trends Anal Chem. 2016;80:387–415.

    Article  CAS  Google Scholar 

  64. Tang Y, Su Y, Yang N, Zhang L, Lv Y. Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem. 2014;86(9):4528–35.

    Article  CAS  Google Scholar 

  65. Fan X, Feng Y, Su Y, Zhang L, Lv Y. A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Adv. 2015;5(68):55158–64.

    Article  CAS  Google Scholar 

  66. Abdolmohammad-Zadeh H, Rahimpour E. A novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricyanide chemiluminescence system for Hg(II) ion detection. Sens Actuators B Chem. 2016;225:258–66.

    Article  CAS  Google Scholar 

  67. Fan XQ, Su YY, Deng DY, Lv Y. Carbon nitride quantum dot-based chemiluminescence resonance energy transfer for iodide ion sensing. RSC Adv. 2016;6(80):76890–6.

    Article  CAS  Google Scholar 

  68. Yu H, He Y, Li W, Duan T. Graphitic carbon nitride nanosheets-enhanced chemiluminescence of luminol for sensitive detection of 2,4,6-trinitrotoluene. Sens Actuators B Chem. 2015;220:516–21.

    Article  CAS  Google Scholar 

  69. Vazquez-Gonzalez M, Liao W-C, Gazelles R, Wang S, Yu X, Gutkin V, Willner I. Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano. 2017;11(3):3247–53.

    Article  CAS  Google Scholar 

  70. Zheng Y, Dou X, Li H, Lin J-M. Bisulfite induced chemiluminescence of g-C3N4 nanosheets and enhanced by metal ions. Nanoscale. 2016;8(9):4933–7.

    Article  CAS  Google Scholar 

  71. Breysse M, Claudel B, Faure L, Guenin M, Williams RJJ, Wolkenstein T. Chemiluminescence during catalysis of carbon-monoxide oxidation on a thoria surface. J Catal. 1976;45(2):137–44.

    Article  CAS  Google Scholar 

  72. Tang F, Guo CA, Chen J, Zhang X, Zhang S, Wang X. Cataluminescence-based sensors: Principle, instrument and application. Luminescence. 2015;30(7):919–39.

    Article  Google Scholar 

  73. Aras VM, Breysse M, Claudel B, Faure L, Guenin M. Chemiluminescence during catalysis. 2. Luminescent transitions of some rare-earth activators embedded in catalyst lattice. J Chem Soc Faraday Trans I. 1977;73:1039–47.

    Article  CAS  Google Scholar 

  74. Breysse M, Claudel B, Faure L, Guenin M. Temperature-programmed desorption and photo-luminescence studies of thorium-dioxide surface-states. J Colloid Interface Sci. 1979;70(1):201–7.

    Article  CAS  Google Scholar 

  75. Klodel B, Breiss M, For L, Genin M. Luminescence phenomena on the semiconductor surface-model of electron-energy levels of semiconductor catalysts. Zh Fiz Khim. 1978;52(12):3080–6.

    Google Scholar 

  76. Breysse M, Claudel B, Faure L, Guenin M. Role of surface and bulk impurities in the adsorbo-luminescence and photo-luminescence of thorium-dioxide. J Lumin. 1979;18-9:402–6.

    Article  Google Scholar 

  77. Utsunomiya K, Nakagawa M, Tomiyama T, Yamamoto I, Matsuura Y, Chikamori S, Wada T, Yamashita N, Yamashita Y. Discrimination and determination of gases utilizing adsorption luminescence. Sens Actuators B Chem. 1993;11(1–3):441–5.

    Article  CAS  Google Scholar 

  78. Nakagawa M. A new chemiluminescence-based sensor for discriminating and determining constituents in mixed gases. Sens Actuators B Chem. 1995;29(1–3):94–100.

    Article  CAS  Google Scholar 

  79. Nakagawa M, Kawabata S, Nishiyama K, Utsunomiya K, Yamamoto I, Wada T, Yamashita Y, Yamashita N. Analytical detection system of mixed odor vapors using chemiluminescence-based gas sensor. Sens Actuators B Chem. 1996;34(1–3):334–8.

    Article  CAS  Google Scholar 

  80. Nakagawa M, Yamamoto I, Yamashita N. Detection of organic molecules dissolved in water using a gamma-al2o3 chemiluminescence-based sensor. Anal Sci. 1998;14(1):209–14.

    Article  CAS  Google Scholar 

  81. Nakagawa M, Yamashita N, Cataluminescence-based gas sensors. In: Frontiers in chemical sensors. Springer series on chemical sensors and biosensors, vol 3. Berlin: Springer; 2005. p. 93–132.

  82. Zhu YF, Shi JJ, Zhang ZY, Zhang C, Zhang XR. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal Chem. 2002;74(1):120–4.

    Article  CAS  Google Scholar 

  83. Sun ZY, Yuan HQ, Liu ZM, Han BX, Zhang XR. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater. 2005;17(24):2993–7.

    Article  CAS  Google Scholar 

  84. Na N, Zhang S, Wang S, Zhang X. A catalytic nanomaterial-based optical chemo-sensor array. J Am Chem Soc. 2006;128(45):14420–1.

    Article  CAS  Google Scholar 

  85. Almasian MR, Na N, Wen F, Zhang S, Zhang X. Development of a plasma-assisted cataluminescence system for benzene, toluene, ethylbenzene, and xylenes analysis. Anal Chem. 2010;82(9):3457–9.

    Article  CAS  Google Scholar 

  86. Wu Y, Zhang S, Na N, Wang X, Zhang X. A novel gaseous ester sensor utilizing chemiluminescence on nano-sized sio2. Sens Actuators B Chem. 2007;126(2):461–6.

    Article  CAS  Google Scholar 

  87. Wu CC, Cao X, Wen Q, Wang Z, Gao Q, Zhu H. A vinyl acetate sensor based on cataluminescence on mgo nanoparticles. Talanta. 2009;79(5):1223–7.

    Article  CAS  Google Scholar 

  88. Zhang R, Cao X, Liu Y, Chang X. A new method for identifying compounds by luminescent response profiles on a cataluminescence based sensor. Anal Chem. 2011;83(23):8975–83.

    Article  CAS  Google Scholar 

  89. Zhang R, Cao X, Liu Y, Chang X. Development of a simple cataluminescence sensor system for detecting and discriminating volatile organic compounds at different concentrations. Anal Chem. 2013;85(8):3802–6.

    Article  CAS  Google Scholar 

  90. Li Z, Xi W, Lu C. Hydrotalcite-supported gold nanoparticle catalysts as a low temperature cataluminescence sensing platform. Sens Actuators B Chem. 2015;219:354–60.

    Article  CAS  Google Scholar 

  91. Roda A, Cui H, Lu C. Highlights of analytical chemical luminescence and cataluminescence. Anal Bioanal Chem. 2016;408(30):8727–9.

    Article  CAS  Google Scholar 

  92. Wang S, Yuan Z, Zhang L, Lin Y, Lu C. Recent advances in cataluminescence-based optical sensing systems. Analyst. 2017;142(9):1415–28.

    Article  CAS  Google Scholar 

  93. Zhang L, Chen Y, He N, Lu C. Acetone cataluminescence as an indicator for evaluation of heterogeneous base catalysts in biodiesel production. Anal Chem. 2014;86(1):870–5.

    Article  CAS  Google Scholar 

  94. Zhang R, Hu Y, Li G. Development of a cyclic system for chemiluminescence detection. Anal Chem. 2014;86(12):6080–7.

    Article  CAS  Google Scholar 

  95. Zhang R, Huang W, Li G, Hu Y. Noninvasive strategy based on real-time in vivo cataluminescence monitoring for clinical breath analysis. Anal Chem. 2017;89(6):3353–61.

    Article  CAS  Google Scholar 

  96. Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y. Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem. 2011;21(16):5972–7.

    Article  CAS  Google Scholar 

  97. Xu H, Li Q, Zhang L, Zeng B, Deng D, Lv Y. Transient cataluminescence on flowerlike MgO for discrimination and detection of volatile organic compounds. Anal Chem. 2016;88(16):8137–44.

    Article  CAS  Google Scholar 

  98. Zhang L, Hou X, Liu M, Lv Y, Hou X. Controllable synthesis of Y2O3 microstructures for application in cataluminescence gas sensing. Chem A Eur J. 2011;17(25):7105–11.

    Article  CAS  Google Scholar 

  99. Zhang L, Hu J, Lv Y, Hou X. Recent progress in chemiluminescence for gas analysis. Appl Spectrosc Rev. 2010;45(6):474–89.

    Article  Google Scholar 

  100. Zhang L, Song H, Su Y, Lv Y. Advances in nanomaterial-assisted cataluminescence and its sensing applications. TRAC Trends Anal Chem. 2015;67:107–27.

    Article  CAS  Google Scholar 

  101. Zhang L, Zhou Q, Liu Z, Hou X, Li Y, Lv Y. Novel Mn3O4 micro-octahedra: promising cataluminescence sensing material for acetone. Chem Mater. 2009;21(21):5066–71.

    Article  CAS  Google Scholar 

  102. Zeng B, Zhang L, Wan X, Song H, Lv Y. Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of h2s. Sens Actuators B Chem. 2015;211:370–6.

    Article  CAS  Google Scholar 

  103. Meyer C, Mueller S, Gurevich EL, Franzke J. Dielectric barrier discharges in analytical chemistry. Analyst. 2011;136(12):2427–40.

    Article  CAS  Google Scholar 

  104. Hu Y, Li L, Zhang L, Lv Y. Dielectric barrier discharge plasma-assisted fabrication of g-C3N4-Mn3O4 composite for high-performance cataluminescence H2S gas sensor. Sens Actuators B Chem. 2017;239:1177–84.

    Article  CAS  Google Scholar 

  105. Li X-H, Antonietti M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem Soc Rev. 2013;42(16):6593–604.

    Article  CAS  Google Scholar 

  106. Li L, Hu Y, Deng D, Song H, Lv Y. Highly sensitive cataluminescence gas sensors for 2-butanone based on g-C3N4 sheets decorated with CuO nanoparticles. Anal Bioanal Chem. 2016;408(30):8831–41.

    Article  CAS  Google Scholar 

  107. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  Google Scholar 

  108. Hercules DM. Chemiluminescence resulting from electrochemically generated species. Science. 1964;145(363):808–9.

    Article  CAS  Google Scholar 

  109. Visco RE, Chandross EA. Electroluminescence in solutions of aromatic hydrocarbons. J Am Chem Soc. 1964;86(23):5350–1.

    Article  CAS  Google Scholar 

  110. Santhana KS, Bard AJ. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J Am Chem Soc. 1965;87(1):139–40.

    Article  Google Scholar 

  111. Wu P, Hou X, Xu J-J, Chen H-Y. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev. 2014;114(21):11027–59.

    Article  CAS  Google Scholar 

  112. Chu C, Li M, Ge S, Ge L, Yu J, Yan M, Song X, Li L, Han B, Li J. “Sugarcoated haws on a stick”-like mwnts-fe3o4-c coaxial nanomaterial: synthesis, characterization and application in electrochemiluminescence immunoassays. Biosens Bioelectron. 2013;47:68–74.

    Article  CAS  Google Scholar 

  113. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304.

    Article  CAS  Google Scholar 

  114. Li J, Guo S, Wang E. Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Adv. 2012;2(9):3579–86.

    Article  CAS  Google Scholar 

  115. Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q. Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta. 2015;182(7–8):1421–9.

    Article  CAS  Google Scholar 

  116. Cheng C, Huang Y, Tian X, Zheng B, Li Y, Yuan H, Xiao D, Xie S, Choi MMF. Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem. 2012;84(11):4754–9.

    Article  CAS  Google Scholar 

  117. Cheng C, Huang Y, Wang J, Zheng B, Yuan H, Xiao D. Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin. Anal Chem. 2013;85(5):2601–5.

    Article  CAS  Google Scholar 

  118. Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G. Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale. 2013;5(1):225–30.

    Article  CAS  Google Scholar 

  119. Liu Y, Wang Q, Lei J, Hao Q, Wang W, Ju H. Anodic electrochemiluminescence of graphitic-phase C3N4 nanosheets for sensitive biosensing. Talanta. 2014;122:130–4.

    Article  CAS  Google Scholar 

  120. Feng Y, Wang Q, Lei J, Ju H. Electrochemiluminescent DNA sensing using carbon nitride nanosheets as emitter for loading of hemin labeled single-stranded DNA. Biosens Bioelectron. 2015;73:7–12.

    Article  CAS  Google Scholar 

  121. Cheng N, Jiang P, Liu Q, Tian J, Asiri AM, Sun X. Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst. 2014;139(20):5065–8.

    Article  CAS  Google Scholar 

  122. Xu H, Zhu X, Dong Y, Wu H, Chen Y, Chi Y. Highly sensitive electrochemiluminescent sensing platform based on graphite carbon nitride nanosheets for detection of pyrophosphate ion in the synovial fluid. Sens Actuators B Chem. 2016;236:8–15.

    Article  CAS  Google Scholar 

  123. Wang H, Ma Q, Wang Y, Wang C, Qin D, Shan D, Chen J, Lu X. Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal Chim Acta. 2017;973:34–42.

    Article  CAS  Google Scholar 

  124. Zhou Z, Shang Q, Shen Y, Zhang L, Zhang Y, Lv Y, Li Y, Liu S, Zhang Y. Chemically modulated carbon nitride nanosheets for highly selective electrochemiluminescent detection of multiple metal-ions. Anal Chem. 2016;88(11):6004–10.

    Article  CAS  Google Scholar 

  125. Li X, Zhang X, Ma H, Wu D, Zhang Y, Du B, Wei Q. Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated g-C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen. Biosens Bioelectron. 2014;55:330–6.

    Article  CAS  Google Scholar 

  126. Han T, Li X, Li Y, Cao W, Du B, Wei Q. Gold nanoparticles enhanced electrochemiluminescence of graphite-like carbon nitride for the detection of nuclear matrix protein 22. Sens Actuators B Chem. 2014;205:176–83.

    Article  CAS  Google Scholar 

  127. Li X, Guo Z, Li J, Zhang Y, Ma H, Pang X, Du B, Wei Q. Quenched electrochemiluminescence of Ag nanoparticles functionalized g-C3N4 by ferrocene for highly sensitive immunosensing. Anal Chim Acta. 2015;854:40–6.

    Article  CAS  Google Scholar 

  128. Li X, Ma H, Zhang Y, Wu D, Lv X, Du B, Wei Q. Enhanced sensing performance of supported graphitic carbon nitride nanosheets and the fabrication of electrochemiluminescent biosensors for IgG. Analyst. 2015;140(24):8172–6.

    Article  CAS  Google Scholar 

  129. Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim D-H, Chen G. Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem. 2014;86(9):4188–95.

    Article  CAS  Google Scholar 

  130. Chen L, Zeng X, Ferhan AR, Chi Y, Kim D-H, Chen G. Signal-on electrochemiluminescent aptasensors based on target controlled permeable films. Chem Commun. 2015;51(6):1035–8.

    Article  CAS  Google Scholar 

  131. Chen L, Zeng X, Dandapat A, Chi Y, Kim D. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases. Anal Chem. 2015;87(17):8851–7.

    Article  CAS  Google Scholar 

  132. Zhou C, Chen Y, Shang P, Chi Y. Strong electrochemiluminescent interactions between carbon nitride nanosheet-reduced graphene oxide nanohybrids and folic acid, and ultrasensitive sensing for folic acid. Analyst. 2016;141(11):3379–88.

    Article  CAS  Google Scholar 

  133. Xu H, Liang S, Zhu X, Wu X, Dong Y, Wu H, Zhang W, Chi Y. Enhanced electrogenerated chemiluminescence behavior of C3N4 QDs@ C3N4 nanosheet and its signal-on aptasensing for platelet derived growth factor. Biosens Bioelectron. 2017;92:695–701.

    Article  CAS  Google Scholar 

  134. Zhu X, Kou F, Xu H, Yang G. A rapid and sensitive electrochemiluminescent sensor for nitrites based on C3N4 quantum dots on C3N4 nanosheets. RSC Adv. 2016;6(107):105331–7.

    Article  CAS  Google Scholar 

  135. Lu Q, Zhang J, Liu X, Wu Y, Yuan R, Chen S. Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@graphitic carbon nitride polymer nanosheet-polyaniline hybrids. Analyst. 2014;139(24):6556–62.

    Article  CAS  Google Scholar 

  136. Wang B, Zhong X, Chai Y, Yuan R. Ultrasensitive electrochemiluminescence biosensor for organophosphate pesticides detection based on carboxylated graphitic carbon nitride-poly(ethylenimine) and acetylcholinesterase. Electrochim Acta. 2017;224:194–200.

    Article  CAS  Google Scholar 

  137. Ou X, Tan X, Liu X, Lu Q, Chen S, Wei S. A signal-on electrochemiluminescence biosensor for detecting con a using phenoxy dextran-graphite-like carbon nitride as signal probe. Biosens Bioelectron. 2015;70:89–97.

    Article  CAS  Google Scholar 

  138. Fu X, Feng J, Tan X, Lu Q, Yuan R, Chen S. Electrochemiluminescence sensor for dopamine with a dual molecular recognition strategy based on graphite-like carbon nitride nanosheets/3,4,9,10-perylenetetracarboxylic acid hybrids. RSC Adv. 2015;5(53):42698–704.

    Article  CAS  Google Scholar 

  139. Fan Y, Tan X, Liu X, Ou X, Chen S, Wei S. A novel non-enzymatic electrochemiluminescence sensor for the detection of glucose based on the competitive reaction between glucose and phenoxy dextran for concanavalin a binding sites. Electrochim Acta. 2015;180:471–8.

    Article  CAS  Google Scholar 

  140. Zuo F, Jin L, Fu X, Zhang H, Yuan R, Chen S. An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching. Sens Actuators B Chem. 2017;244:282–9.

    Article  CAS  Google Scholar 

  141. Fan Y, Tan X, Ou X, Lu Q, Chen S, Wei S. A novel “on-off” electrochemiluminescence sensor for the detection of concanavalin a based on ag-doped g-C3N4. Electrochim Acta. 2016;202:90–9.

    Article  CAS  Google Scholar 

  142. Wu L, Sha Y, Li W, Wang S, Guo Z, Zhou J, Su X, Jiang X. One-step preparation of disposable multi-functionalized g-C3N4 based electrochemiluminescence immunosensor for the detection of CA125. Sens Actuators B Chem. 2016;226:62–8.

    Article  CAS  Google Scholar 

  143. Wu L, Hu Y, Sha Y, Li W, Yan T, Wang S, Li X, Guo Z, Zhou J, Su X. An “in-electrode”-type immunosensing strategy for the detection of squamous cell carcinoma antigen based on electrochemiluminescent Au NPs/C3N4 nanocomposites. Talanta. 2016;160:247–55.

    Article  CAS  Google Scholar 

  144. Xia B, Chu M, Wang S, Wang W, Yang S, Liu C, Luo S. Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu2+. Anal Chim Acta. 2015;891:113–9.

    Article  CAS  Google Scholar 

  145. Xia B, Yuan Q, Chu M, Wang S, Gao R, Yang S, Liu C, Luo S. Directly one-step electrochemical synthesis of graphitic carbon nitride/graphene hybrid and its application in ultrasensitive electrochemiluminescence sensing of pentachlorophenol. Sens Actuators B Chem. 2016;228:565–72.

    Article  CAS  Google Scholar 

  146. Zheng X, Hua X, Qiao X, Xia F, Tian D, Zhou C. Simple and signal-off electrochemiluminescence immunosensor for alpha fetoprotein based on gold nanoparticle-modified graphite-like carbon nitride nanosheet nanohybrids. RSC Adv. 2016;6(26):21308–16.

    Article  CAS  Google Scholar 

  147. Xie S, Wang F, Wu Z, Joshi L, Liu Y. A sensitive electrogenerated chemiluminescence biosensor for galactosyltransferase activity analysis based on a graphitic carbon nitride nanosheet interface and polystyrene microsphere-enhanced responses. RSC Adv. 2016;6(39):32804–10.

    Article  CAS  Google Scholar 

  148. Chen S, Li A, Zhang L, Gong J. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid. Anal Chim Acta. 2015;896:68–77.

    Article  CAS  Google Scholar 

  149. Lin X, Zhu S, Wang Q, Xia Q, Ran P, Fu Y. Chiral recognition of penicillamine enantiomers using hemoglobin and gold nanoparticles functionalized graphite-like carbon nitride nanosheets via electrochemiluminescence. Colloids Surf B Biointerfaces. 2016;148:371–6.

    Article  CAS  Google Scholar 

  150. Wang Y-Z, Hao N, Feng Q-M, Shi H-W, Xu J-J, Chen H-Y. A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposites. Biosens Bioelectron. 2016;77:76–82.

    Article  CAS  Google Scholar 

  151. Feng Q-M, Shen Y-Z, Li M-X, Zhang Z-L, Zhao W, Xu J-J, Chen H-Y. Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy) 2+3 for microrna detection. Anal Chem. 2016;88(1):937–44.

    Article  CAS  Google Scholar 

  152. Wang Y-Z, Zhao W, Dai P-P, Lu H-J, Xu J-J, Pan J, Chen H-Y. Spatial-resolved electrochemiluminescence ratiometry based on bipolar electrode for bioanalysis. Biosens Bioelectron. 2016;86:683–9.

    Article  CAS  Google Scholar 

  153. He Y, Li J, Liu Y. Reusable and dual-potential responses electrogenerated chemiluminescence biosensor for synchronously cytosensing and dynamic cell surface N-glycan evaluation. Anal Chem. 2015;87(19):9777–85.

    Article  CAS  Google Scholar 

  154. Guo Z, Wu L, Hu Y, Wang S, Li X. Potential-resolved “in-electrode” type electrochemiluminescence immunoassay based on functionalized g-C3N4 nanosheet and Ru-NH2 for simultaneous determination of dual targets. Biosens Bioelectron. 2017;95:27–33.

    Article  CAS  Google Scholar 

  155. Shang Q, Zhou Z, Shen Y, Zhang Y, Li Y, Liu S, Zhang Y. Potential-modulated electrochemiluminescence of carbon nitride nanosheets for dual-signal sensing of metal ions. ACS Appl Mater Interfaces. 2015;7(42):23672–8.

    Article  CAS  Google Scholar 

  156. Chen H, Tan X, Zhang J, Lu Q, Ou X, Ruo Y, Chen S. An electrogenerated chemiluminescent biosensor based on a g-C3N4-hemin nanocomposite and hollow gold nanoparticles for the detection of lactate. RSC Adv. 2014;4(106):61759–66.

    Article  CAS  Google Scholar 

  157. Deng S, Yuan P, Ji X, Shan D, Zhang X. Carbon nitride nanosheet-supported porphyrin: a new biomimetic catalyst for highly efficient bioanalysis. ACS Appl Mater Interfaces. 2015;7(1):543–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge financial support for this project from the National Natural Science Foundation of China [nos. 21405107 and 21375089].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lv.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Zhang, L., Su, Y. et al. Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence. J. Anal. Test. 1, 274–290 (2017). https://doi.org/10.1007/s41664-017-0024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-017-0024-6

Keywords

Navigation