Skip to main content

Advertisement

Log in

A study on noise reduction for dual-energy CT material decomposition with autoencoder

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

A major challenge for the material decomposition task of the dual-energy computed tomography (DECT) is the algorithm often suffers from heavy noise in the results. The purpose of this study is to propose a scheme to increase the noise performance of material decomposition.

Methods

The scheme we propose in this paper is to apply an autoencoder-based denoising procedure to the photon-counting DECT images before they are fed into the material decomposition algorithm. We implement the autoencoder (AE) by stacking a series of convolutional and deconvolutional layers. The decomposition technique adopted in our work is an iterative method using least squares estimation with the Huber loss function. The noises of the input and the output of material decomposition are analyzed with both simulated data and real data. Phantom and chicken wing experiments are conducted with a photon-counting-based spectral CT scanner to evaluate the proposed material decomposition scheme.

Results

The noise analysis of the input and the output of material decomposition demonstrates a positive correlation between them. Comparative experiment indicates a noise reduction in the output density maps for 26.07% to 35.65% after the autoencoder pre-processing is applied. The resultant contrast-to-noise ratio is largely increased, correspondingly.

Conclusions

By utilizing the additional autoencoder denoising step, the material decomposition algorithm achieves an improvement in the noise performance of the resultant density maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.E. Alvarez, A. Macovski, Energy-selective reconstruction in X-ray computerized tomography. Phys. Med. Biol. 21, 733–744 (1976)

    Article  Google Scholar 

  2. L.A. Lehmann, R.E. Alvarez, A. Macovski, W.R. Brody, N.J. Pelc, S.J. Riederer, A.L. Hall, Generalized image combinations in dual KVP digital radiography. Med. Phys. 8, 659–667 (1981)

    Article  Google Scholar 

  3. W.A. Kalender, W.H. Perman, J.R. Vetter, E. Klotz, Evaluation of a prototype dual-energy computed tomographic apparatus. Med. Phys. 13, 334–339 (1986)

    Article  Google Scholar 

  4. S.C. Kappadath, C.C. Shaw, Dual-energy digital mammography: calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio. Med. Phys. 30, 1110–1117 (2006)

    Article  Google Scholar 

  5. R. Alvarez, Estimator for photon counting energy selective X-ray imaging with multibin pulse height analysis. Med. Phys. 38, 2324–2334 (2011)

    Article  Google Scholar 

  6. S. Lee, Y.-N. Choi, H.-J. Kim, Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector. Phys. Med. Biol. 59, 5457–5482 (2014)

    Article  Google Scholar 

  7. Y. Long, J.A. Fessler, Multi-material decomposition using statistical image reconstruction for spectral CT. IEEE Trans. Med. Imaging 33, 1614–1626 (2014)

    Article  Google Scholar 

  8. M. Firsching, J. Giersch, D. Niederlöhner, G. Anton, A method for stoichiometric material reconstruction with spectroscopic X-ray pixel detectors, in IEEE Nuclear Science Symposium Conference Record, vol. 7 (2004), pp. 4116–4119

  9. J. Giersch, M. Firsching, D. Niederlöhner, G. Anton, Material reconstruction with spectroscopic pixel X-ray detectors. Nucl. Instrum. Methods Phys. Res. A 546, 125–130 (2005)

    Article  ADS  Google Scholar 

  10. M. Firsching, P.T. Talla, T. Michel, G. Anton, Material resolving X-ray imaging using spectrum reconstruction with Medipix2. Nucl. Instrum. Methods Phys. Res. A 591, 19–23 (2008)

    Article  ADS  Google Scholar 

  11. P.V. Granton, S.I. Pollmann, N.L. Ford, M. Drangova, D.W. Holdsworth, Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition. Med. Phys. 35, 5030–5042 (2008)

    Article  Google Scholar 

  12. M. Firsching, A.P. Butler, N. Scott, N.G. Anderson, T. Michel, G. Anton, Contrast agent recognition in small animal CT using the Medipix2 detector. Nucl. Instrum. Methods Phys. Res. A 607, 179–182 (2009)

    Article  ADS  Google Scholar 

  13. H. Ding, M. Klopfer, J. Ducote, F. Masaki, S. Molloi, Breast tissue characterization with photon-counting spectral CT imaging: a postmortem breast study. Radiology 272, 731–738 (2014)

    Article  Google Scholar 

  14. X. Dong, T. Niu, L. Zhu, Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Med. Phys. 41, 051909 (2014)

    Article  Google Scholar 

  15. R.F. Barber, E.Y. Sidky, T.G. Schmidt, X. Pan, An algorithm for constrained one-step inversion of spectral CT data. Phys. Med. Biol. 61, 3784–3818 (2016)

    Article  Google Scholar 

  16. B. Chen, Z. Zhang, E.Y. Sidky, X. Pan, Image reconstruction and scan configurations enabled by optimization-based algorithms in multispectral CT. Phys. Med. Biol. 62, 8763–8793 (2017)

    Article  Google Scholar 

  17. S. Niu, G. Yu, J. Ma, J. Wang, Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction. Inverse Probl. 34, 024003 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Chang, X. Mou, A statistical iterative reconstruction framework for dual energy computed tomography without knowing tube spectrum, in Developments in X-ray Tomography X (2016)

  19. K.-S. Chuang, H.K. Huang, Comparison of four dual energy image decomposition methods. Phys. Med. Biol. 33, 455–466 (1988)

    Article  Google Scholar 

  20. Q. Xu, X. Mou, S. Tang, W. Hong, Y. Zhang, T. Luo, Implementation of penalized-likelihood statistical reconstruction for polychromatic dual-energy CT, in Medical Imaging 2009: Physics of Medical Imaging, vol. 72585 (2009), pp. 72585I-1–72585I-9

  21. H.Q. Le, S. Molloi, Least squares parameter estimation methods for material decomposition with energy discriminating detectors. Med. Phys. 38, 245–255 (2011)

    Article  Google Scholar 

  22. H. Ding, J.L. Ducote, S. Molloi, Breast composition measurement with a cadmium-zinc-telluride based spectral computed tomography system. Med. Phys. 39, 1289–1297 (2012)

    Article  Google Scholar 

  23. J. Lin, H. Zhang, J. Huang, Z. Bian, S. Zhang, Y. Wang, Y. Liao, S. Li, H. Zhang, D. Zeng, J. Ma, Iterative reconstruction for low does dual energy CT using information-divergence constrained spectral redundancy information. J. X-ray Sci. Technol. 26, 311–330 (2018)

    Article  Google Scholar 

  24. J. Harms, T. Wang, M. Petrongolo, T. Niu, L. Zhu, Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization. Med. Phys. 43, 2676–2686 (2016)

    Article  Google Scholar 

  25. Y. Xue, R. Ruan, H. Xinhua, Yu. Kuang, J. Wang, Y. Long, T. Niu, Statistical image-domain multimaterial decomposition for dual-energy CT. Med. Phys. 44, 886–901 (2017)

    Article  Google Scholar 

  26. Q. Ding, T. Niu, X. Zhang, Y. Long, Image-domain multimaterial decomposition for dual-energy CT based on prior information of material images. Med. Phys. 45, 3614–3626 (2018)

    Article  Google Scholar 

  27. U. Tanyeri, R. Demirci, Wavelet-based adaptive anisotropic diffusion filter. Adv. Electr. Comput. Eng. 18, 99–106 (2018)

    Article  Google Scholar 

  28. B. Ye, X. Wu, Wavelet denoising arithmetic research based on small hepatocellular carcinoma CT image, in 3rd International Conference on Bioinformatics and Biomedical Engineering (2009)

  29. Z. Cao, X. Zhang, PDE-based non-linear anisotropic diffusion techniques for medical image denoising, in 2012 Spring Congress on Engineering and Technology (2012), pp. 1–4

  30. Q. Liu, S. Wang, J. Luo, Y. Zhu, M. Ye, An augmented Lagrangian approach to general dictionary learning for image denoising. J. Vis. Commun. Image Represent. 23, 753–766 (2012)

    Article  Google Scholar 

  31. S. Wang, Q. Liu, Y. Xia, P. Dong, J. Luo, Q. Huang, D.D. Feng, Dictionary learning based impulse noise removal via L1–L1 minimization. Signal Process. 93, 2696–2708 (2013)

    Article  Google Scholar 

  32. Q. Chen, W. Dapeng, Image denoising by bounded block matching and 3D filtering. Signal Process. 90, 2778–2783 (2010)

    Article  Google Scholar 

  33. X.-J. Mao, C. Shen, Y.-B. Yang, Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections, in 29th Conference on Neural Information Processing Systems (2016)

  34. H. Chen, Y. Zhang, M.K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, G. Wang, Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36, 2524–2535 (2017)

    Article  Google Scholar 

  35. T. Niu, X. Dong, M. Petrongolo, L. Zhu, Iterative image-domain decomposition for dual-energy CT. Med. Phys. 41, 041901-1–041901-10 (2014)

    Google Scholar 

  36. S. Tang, M. Yang, X. Hu, T. Niu, Multiscale penalized weighted least-squares image-domain decomposition for dual-energy CT, in 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2015), pp. 1–6

  37. C.-Y. Liou, W.-C. Cheng, J.-W. Liou, D.-R. Liou, Autoencoder for words. Neurocomputing 139, 84–96 (2014)

    Article  Google Scholar 

  38. D. Kumar, A. Wong, D.A. Clausi, Lung nodule classification using deep features in CT images, in 2015 IEEE 12th Conference on Computer and Robot Vision (2015), pp. 133–138

  39. J.-Z. Cheng, D. Ni, Y.-H. Chou, J. Qin, C.-M. Tiu, Y.-C. Chang, C.-S. Huang, D. Shen, C.-M. Chen, Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)

    Article  ADS  Google Scholar 

  40. M. Kallenberg, K. Petersen, M. Nelsen, A.Y. Ng, P. Diao, C. Igel, C.M. Vachon, K. Holland, R.R. Winkel, N. Karssemeijer, M. Lillholm, Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35, 1322–1331 (2016)

    Article  Google Scholar 

  41. R. Hata, M.A.H. Akhand, K. Murase, Multi-valued autoencoders and classification of large-scale multi-class problem. Int. J. Adv. Comput. Sci. Appl. 8, 19–26 (2017)

    Google Scholar 

  42. Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, L. Carin, Variational autoencoder for deep learning of images, labels and captions, in 30th Conference on Neural Information Processing Systems (NIPS 2016)

  43. M. Nishio, C. Nagashima, S. Hirabayashi, A. Ohnishi, K. Sasaki, T. Sagawa, M. Hamada, T. Yamashita, Convolutional auto-encoder for image denoising of ultra-low-dose CT. Heliyon 3, e00393 (2017)

    Article  Google Scholar 

  44. H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, G. Wang, Low-dose CT denosing with convolutional neural network, in 2017 IEEE 14th International Symposium on Biomedical Imaging (2017), pp. 143–146

  45. C. You, Q. Yang, H. Shan, L. Gjesteby, G. Li, J. Shenghong, Z. Zhang, Z. Zhao, Y. Zhang, W. Cong, G. Wang, Structurally-sensitive multi-scale deep neural network for low-dose CT denosing. IEEE Access. 6, 41839–41855 (2018)

    Article  Google Scholar 

  46. M. Zeiler, ADADELTA: an adaptive learning rate method (2012). arXiv:1212.5701v1

  47. B. Li, B. Li, J. Luo, P. Tang, J. Mao, W. Xiaoye, Simultaneous reduction in noise and cross-contamination artifacts for dual-energy X-ray CT. Biomed. Res. Int. 2013, 1–8 (2013)

    Google Scholar 

  48. W. Dufan, L. Zhang, X. Zhu, X. Xiaofei, S. Wang, A weighted polynomial based material decomposition method for spectral x-ray CT imaging. Phys. Med. Biol. 61, 3749–3783 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (Grant No. 2016YFC0100400), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201511) and the Key Technology Research and Development Team Project of Chinese Academy of Sciences (Grant No. GJJSTD2017005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunfeng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, Z., Xu, Q. et al. A study on noise reduction for dual-energy CT material decomposition with autoencoder. Radiat Detect Technol Methods 3, 44 (2019). https://doi.org/10.1007/s41605-019-0122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-019-0122-2

Keywords

Navigation