Skip to main content
Log in

A Complete Review on Image Denoising Techniques for Medical Images

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Medical imaging methods, such as CT scans, MRI scans, X-rays, and ultrasound imaging, are widely used for diagnosis in the healthcare domain. However, these methods are often affected by noise, which can lead to incorrect diagnoses. Radiologists used to rely on visual features observed through various imaging techniques to diagnose diseases in patients, but now, intelligent machines and artificial intelligence offer more accurate and early diagnoses. Over the past few decades, the classical problem of image denoising in computer vision has been extensively studied. This survey paper discusses the various techniques applicable which have tried to remove the noise from medical images. A complete overview of the problem hypothesis is stated in the paper, with an in-depth discussion on types and sources of noise and the evaluation metrics deployed, followed by the discussion and implementation of various filtering and image enhancement techniques. The section is succeeded by a comprehensive literature review conducted on leading and state-of-the-art methods in broadly four domains—frequency domain, filtering, CNN-based, Generative Adversarial Networks (GAN)-based and Transformer-based approaches. The conclusion summarises the findings and proposes the importance of image denoising, focusing on Explainable AI (XAI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boyat AK, Joshi BK (2015) A review paper: noise models in digital image processing. arXiv preprint arXiv:1505.03489

  2. Gonzalez RC, Wintz P (1977) Digital image processing (book). Applied mathematics and computation, vol 13. Addison-Wesley Publishing Co., Inc, Reading, p 451

    Google Scholar 

  3. Boncelet C (2009) Chapter 7—Image noise models. In: Bovik A (ed) The essential guide to image processing. Academic Press, Boston, pp 143–167. https://doi.org/10.1016/B978-0-12-374457-9.00007-X

    Chapter  Google Scholar 

  4. Goodman JW (1976) Some fundamental properties of speckle\(\ast \). J Opt Soc Am 66(11):1145–1150. https://doi.org/10.1364/JOSA.66.001145

    Article  Google Scholar 

  5. Thakur KV, Damodare OH, Sapkal AM (2016) Poisson noise reducing bilateral filter. Procedia Comput Sci 79:861–865. https://doi.org/10.1016/j.procs.2016.03.087

    Article  Google Scholar 

  6. Horé A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In: 2010 20th international conference on pattern recognition, pp 2366–2369. https://doi.org/10.1109/ICPR.2010.579

  7. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  8. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: A feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386. https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

  9. Sara U, Akter M, Uddin MS (2019) Image quality assessment through FSIM, SSIM, MSE and PSNR: a comparative study. J Comput Commun 7(3):8–18

    Article  Google Scholar 

  10. Paris S, Kornprobst P, Tumblin J, Durand F (2009) Bilateral filtering: Theory and applications. Foundations and Trends® in Computer Graphics and Vision 4.1. pp 1–73

  11. Uchida S (2013) Image processing and recognition for biological images. Dev Growth Differ 55(4):523–549. https://doi.org/10.1111/dgd.12054

    Article  Google Scholar 

  12. Bhonsle D, Chandra V, Sinha G (2012) Medical image denoising using bilateral filter. Int J Image Graph Signal Process 4:36–43

    Article  Google Scholar 

  13. Li SZ, Jain A (2009) Local adaptive thresholding. Springer, Boston, pp 939–939. https://doi.org/10.1007/978-0-387-73003-5_506

    Book  Google Scholar 

  14. Sreedhar K, Panlal B (2012) Enhancement of images using morphological transformation. CoRR arXiv:1203.2514

  15. Wang X (2007) Laplacian operator-based edge detectors. IEEE Trans Pattern Anal Mach Intell 29(5):886–890. https://doi.org/10.1109/TPAMI.2007.1027

    Article  Google Scholar 

  16. Cheng HD, Shi XJ (2004) A simple and effective histogram equalization approach to image enhancement. Digit Signal Process 14(2):158–170. https://doi.org/10.1016/j.dsp.2003.07.002

    Article  Google Scholar 

  17. Erez Y, Schechner YY, Adam D (2006) Ultrasound image denoising by spatially varying frequency compounding. In: Franke K, Müller K-R, Nickolay B, Schäfer R (eds) Pattern Recognit. Springer, Berlin, Heidelberg, pp 1–10

    Google Scholar 

  18. Corle TR, Kino GS (1996) Chapter 1: Introduction. In: Corle TR, Kino GS (eds) Confocal scanning optical microscopy and related imaging systems. Academic Press, Burlington, pp 1–66. https://doi.org/10.1016/B978-012408750-7/50009-4

    Chapter  Google Scholar 

  19. Zhu F, Chen G, Heng PA (2016) From noise modeling to blind image denoising. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 420–429. https://doi.org/10.1109/CVPR.2016.52

  20. Gupta N, Swamy MNS, Plotkin E (2005) Despeckling of medical ultrasound images using data and rate adaptive lossy compression. IEEE Trans Med Imaging 24(6):743–754. https://doi.org/10.1109/TMI.2005.847401

    Article  Google Scholar 

  21. Erez Y, Schechner YY, Adam D (2006) Ultrasound image denoising by spatially varying frequency compounding. In: Pattern recognition: 28th DAGM symposium, Berlin, Germany, September 12–14. Proceedings 28. Springer, pp 1–10

  22. Bhonsle D, Chandra V, Sinha G (2012) Medical image denoising using bilateral filter. Int J Image Graph Signal Process 4(6):36

    Article  Google Scholar 

  23. Zhu F, Chen G, Heng P-A (2016) From noise modeling to blind image denoising. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 420–429

  24. Gupta N, Swamy M, Plotkin E (2005) Despeckling of medical ultrasound images using data and rate adaptive lossy compression. IEEE Trans Med Imaging 24(6):743–754

    Article  Google Scholar 

  25. Andria G, Attivissimo F, Cavone G, Giaquinto N, Lanzolla AML (2012) Linear filtering of 2-d wavelet coefficients for denoising ultrasound medical images. Measurement 45(7):1792–1800. https://doi.org/10.1016/j.measurement.2012.04.005

    Article  Google Scholar 

  26. Rani MLP, Sasibhushana Rao G, Prabhakara Rao B (2019) Ann application for medical image denoising. In: Bansal JC, Das KN, Nagar A, Deep K, Ojha AK (eds) Soft computing for problem solving. Springer, Singapore, pp 675–684

    Chapter  Google Scholar 

  27. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155. https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  28. Lefkimmiatis S (2018) Universal denoising networks: A novel CNN architecture for image denoising. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 3204–3213. https://doi.org/10.1109/CVPR.2018.00338

  29. Laves M-H, Tölle M, Ortmaier T (2020) Uncertainty estimation in medical image denoising with Bayesian deep image prior. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis: Second International Workshop, UNSURE 2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings 2. Springer International Publishing

  30. Gondara L (2016) Medical image denoising using convolutional denoising autoencoders. In: 2016 IEEE 16th international conference on data mining workshops (ICDMW) https://doi.org/10.1109/icdmw.2016.0041

  31. Dong G, Ma Y, Basu A (2021) Feature-guided CNN for denoising images from portable ultrasound devices. IEEE Access 9:28272–28281. https://doi.org/10.1109/ACCESS.2021.3059003

    Article  Google Scholar 

  32. Sharif SMA, Naqvi RA, Biswas M (2020) Learning medical image denoising with deep dynamic residual attention network. Mathematics. https://doi.org/10.3390/math8122192

    Article  Google Scholar 

  33. Perdios D, Besson A, Arditi M, Thiran J-P (2017) A deep learning approach to ultrasound image recovery. In: 2017 IEEE international ultrasonics symposium (IUS), pp 1–4. https://doi.org/10.1109/ULTSYM.2017.8092746

  34. Tian C, Xu Y, Zuo W (2020) Image denoising using deep CNN with batch renormalization. Neural Netw 121:461–473. https://doi.org/10.1016/j.neunet.2019.08.022

    Article  Google Scholar 

  35. Xu J, Li H, Liang Z, Zhang D, Zhang L (2018) Real-world noisy image denoising: a new benchmark. arXiv preprint arXiv:1804.02603

  36. Lan Y, Zhang X (2020) Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNet. IEEE Access 8:195327–195340. https://doi.org/10.1109/ACCESS.2020.3034230

    Article  Google Scholar 

  37. Lu Y, Yang M, Liu RW (2021) DSPNet: deep learning-enabled blind reduction of speckle noise. In: 2020 25th international conference on pattern recognition (ICPR), pp 3475–3482. https://doi.org/10.1109/ICPR48806.2021.9413017

  38. Chen K, Long K, Ren Y, Sun J, Pu X (2021) Lesion-inspired denoising network: connecting medical image denoising and lesion detection. In: Proceedings of the 29th ACM International Conference on Multimedia

  39. Elhoseny M, Shankar K (2019) Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements. Measurement 143:125–135. https://doi.org/10.1016/j.measurement.2019.04.072

    Article  Google Scholar 

  40. Liu P, El Basha MD, Li Y, Xiao Y, Sanelli PC, Fang R (2019) Deep evolutionary networks with expedited genetic algorithms for medical image denoising. Med Image Anal 54:306–315. https://doi.org/10.1016/j.media.2019.03.004

    Article  Google Scholar 

  41. Liu D, Wen B, Liu X, Wang Z, Huang TS (2017) When image denoising meets high-level vision tasks: a deep learning approach. arXiv preprint arXiv:1706.04284

  42. Chen K, Long K, Ren Y, Sun J, Pu X (2021) Lesion-inspired denoising network: connecting medical image denoising and lesion detection. CoRR arXiv:2104.08845

  43. Heuvel TLA, Bruijn D, Korte CL, Bv Ginneken (2018) Automated measurement of fetal head circumference using 2d ultrasound images. PLOS ONE 13(8):1–20. https://doi.org/10.1371/journal.pone.0200412

    Article  Google Scholar 

  44. Wang Z, Liu J, Li G, Han H (2022) Blind2unblind: self-supervised image denoising with visible blind spots. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2027–2036

  45. Zhang Y, Li D, Law KL, Wang X, Qin H, Li H (2022) IDR: self-supervised image denoising via iterative data refinement. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2098–2107

  46. Guo S, Wang G, Han L, Song X, Yang W (2022) COVID-19 CT image denoising algorithm based on adaptive threshold and optimized weighted median filter. Biomed Signal Process Control 75:103552

    Article  Google Scholar 

  47. Jiang B, Lu Y, Wang J, Lu G, Zhang D (2022) Deep image denoising with adaptive priors. IEEE Trans Circuits Syst Video Technol 32(8):5124–5136

    Article  Google Scholar 

  48. Mei K, Patel VM, Huang R (2022) Deep semantic statistics matching (D2SM) denoising network. In: Computer vision–ECCV 2022: 17th European conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VII. Springer, pp 384–400

  49. Jiang Y, Wronski B, Mildenhall B, Barron JT, Wang Z, Xue T (2022) Fast and high quality image denoising via malleable convolution. In: Computer vision–ECCV 2022: 17th European conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVIII. Springer, pp 429–446

  50. Lee W, Son S, Lee KM (2022) AP-BSN: self-supervised denoising for real-world images via asymmetric PD and blind-spot network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

  51. Marcos L, Quint F, Babyn P, Alirezaie J (2022) Dilated convolution ResNet with boosting attention modules and combined loss functions for LDCT image denoising. In: 2022 44th annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE, pp 1548–1551

  52. Mazandarani FN, Marcos L, Babyn P, Alirezaie J (2022) Gradient-based optimization algorithm for hybrid loss function in low-dose CT denoising. In: 2022 44th annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE, pp 3834–3838

  53. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Communications of the ACM 63.11. pp 139–144

  54. Mishra D, Chaudhury S, Sarkar M, Soin AS (2018) Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process Lett 25(9):1349–1353. https://doi.org/10.1109/LSP.2018.2858147

    Article  Google Scholar 

  55. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37(6):1348–1357. https://doi.org/10.1109/TMI.2018.2827462

    Article  Google Scholar 

  56. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Loy CC, Qiao Y, Tang X (2018) ESRGAN: enhanced super-resolution generative adversarial networks. CoRR arXiv:1809.00219

  57. Monakhova K, Richter SR, Waller L, Koltun V (2022) Dancing under the stars: video denoising in starlight. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 16241–16251

  58. Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, Gatidis S, Yang B (2020) MedGAN: medical image translation using GANs. Comput Med Imaging Graph 79:101684. https://doi.org/10.1016/j.compmedimag.2019.101684

    Article  Google Scholar 

  59. Chen J, Chen J, Chao H, Yang M (2018) Image blind denoising with generative adversarial network based noise modeling. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 3155–3164. https://doi.org/10.1109/CVPR.2018.00333

  60. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC (2017) Improved training of Wasserstein GANs. CoRR arXiv:1704.00028

  61. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Advances in neural information processing systems 30

  62. Chen H, Yang G, Zhang H (2022) Hider: a hyperspectral image denoising transformer with spatial-spectral constraints for hybrid noise removal. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3215751

    Article  Google Scholar 

  63. Yin H, Ma S (2022) CSformer: cross-scale features fusion based transformer for image denoising. IEEE Signal Process Lett 29:1809–1813. https://doi.org/10.1109/LSP.2022.3199145

    Article  Google Scholar 

  64. Zhao M, Cao G, Huang X, Yang L (2022) Hybrid transformer-CNN for real image denoising. IEEE Signal Process Lett 29:1252–1256. https://doi.org/10.1109/LSP.2022.3176486

    Article  Google Scholar 

  65. Zhang D, Zhou F (2023) Self-supervised image denoising for real-world images with context-aware transformer. IEEE Access 11:14340–14349. https://doi.org/10.1109/access.2023.3243829

    Article  Google Scholar 

  66. Fan C-M, Liu T-J, Liu K-H (2022) SUNet: swin transformer UNet for image denoising. In: 2022 IEEE international symposium on circuits and systems (ISCAS). IEEE. https://doi.org/10.1109/iscas48785.2022.9937486

  67. Wang F, Li J, Yuan Q, Zhang L (2022) Local-global feature-aware transformer based residual network for hyperspectral image denoising. IEEE Trans Geosci Remote Sens 60:1–19. https://doi.org/10.1109/TGRS.2022.3229361

    Article  Google Scholar 

  68. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings eighth IEEE international conference on computer vision, vol 2, pp 416–423

  69. Abdelhamed A, Lin S, Brown MS (2018) A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  70. Zhang Y, Zhu Y, Nichols EL, Wang Q, Zhang S, Smith CJ, Howard SS (2018) A Poisson–Gaussian denoising dataset with real fluorescence microscopy images. CoRR arXiv:1812.10366

  71. Zhang Y, Zhu Y, Nichols E, Wang Q, Zhang S, Smith C, Howard S (2019) A Poisson–Gaussian denoising dataset with real fluorescence microscopy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

  72. Yue H, Cao C, Liao L, Chu R, Yang J (2020) Supervised raw video denoising with a benchmark dataset on dynamic scenes. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

  73. Brummer B, De Vleeschouwer C (2019) Natural image noise dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops

  74. Nah S, Kim TH, Lee KM (2017) Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  75. Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollár P (2014) Microsoft COCO: common objects in context. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing

  76. Ma K, Duanmu Z, Wu Q, Wang Z, Yong H, Li H, Zhang L (2017) Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans Image Process 26(2):1004–1016

    Article  MathSciNet  MATH  Google Scholar 

  77. Zhang L, Wu X, Buades A, Li X (2011) Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. J Electron Imaging 20(2):023016

    Article  Google Scholar 

  78. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images

  79. Coates A, Ng A, Lee H (2011) An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR workshop and conference proceedings, pp 215–223

  80. Yu F, Seff A, Zhang Y, Song S, Funkhouser T, Xiao J (2015) LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365

  81. Agustsson E, Timofte R (2017) NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Dong, G. A Complete Review on Image Denoising Techniques for Medical Images. Neural Process Lett 55, 7807–7850 (2023). https://doi.org/10.1007/s11063-023-11286-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11286-1

Keywords

Navigation