Skip to main content

Advertisement

Log in

Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Betavoltaic cells (BCs) are promising self-generating power cells with long life and high power density. However, the low energy conversion efficiency (ECE) has limitations in practical engineering applications. Wide-bandgap semiconductors (WBGSs) with three-dimensional (3-D) nanostructures are ideal candidates for increasing the ECE of BCs. This paper proposes hydrothermally grown ZnO nanorod arrays (ZNRAs) for 63Ni-powered BCs. A quantitative model was established for simulation using the parameter values of the dark characteristics, which were obtained from the experimental measurements for a simulated BC based on a Ni-incorporated ZNRAs structure. Monte Carlo (MC) modeling and simulation were conducted to obtain the values of the β energy deposited in ZNRAs with different nanorod spacings and heights. Through the simulation and optimization of the 3-D ZNRAs and 2-D ZnO bulk structures, the performance of the 63Ni-powered BCs based on both structures was evaluated using a quantitative model. The BCs based on the 3-D ZNRAs structure and 2-D ZnO bulk structure achieved a maximum ECE of 10.1% and 4.69%, respectively, which indicates the significant superiority of 3-D nanostructured WBGSs in increasing the ECE of BCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.C. Olsen, P. Cabauy, B.J. Elkind, Betavoltaic power sources. Phys. Today. 65, 35–38 (2012). https://doi.org/10.1063/PT.3.1820

    Article  ADS  Google Scholar 

  2. L.C. Olsen, Betavoltaic energy conversion. Energy Conver. 13, 117–124 (1973). https://doi.org/10.1016/0013-7480(73)90010-7

    Article  Google Scholar 

  3. C.L. Weaver, R.J. Schott, M.A. Prelas et al., Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210 Po source. Appl. Radiat. Isotopes. 132, 110–115 (2018). https://doi.org/10.1016/j.apradiso.2017.11.026

    Article  Google Scholar 

  4. M.G. Spencer, T. Alam, High power direct energy conversion by nuclear batteries. Appl. Radiat. Isotopes. 6, 031305 (2019). https://doi.org/10.1063/1.5123163

    Article  Google Scholar 

  5. C.J. Eiting, V. Krishnamoorthy, S. Rodgers et al., Demonstration of a radiation resistant, high efficiency SiC betavoltaic. Appl. Phys. Lett. 88, 1–38 (2006). https://doi.org/10.1063/1.2172411

    Article  Google Scholar 

  6. D.Y. Qiao, X.J. Chen, Y. Ren et al., A Micro Nuclear Battery Based on SiC Schottky Barrier Diode. J. Microelectromech. S. 20, 685–690 (2011). https://doi.org/10.1109/JMEMS.2011.2127448

    Article  Google Scholar 

  7. A.A. Svintsov, A.A. Krasnov, M.A. Polikarpov et al., Betavoltaic battery performance Comparison of modeling and experiment. Appl. Radiat. Isotopes. 137, 184–189 (2018). https://doi.org/10.1016/j.apradiso.2018.04.010

    Article  Google Scholar 

  8. C. Munson, Q. Gaimard, K. Merghem et al., Modeling, Design, Fabrication and Experimentation of a GaN-based, 63Ni Betavoltaic Battery. J. Phys. D: Appl. Phys. 51, 035101 (2017). https://doi.org/10.1088/1361-6463/aa9e41

    Article  Google Scholar 

  9. S. Butera, M.D.C. Whitaker, A.B. Krysa et al., Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63 Ni betavoltaic cell. J. Phys. D Appl. Phys. 50(34), 345101 (2017). https://doi.org/10.1088/1361-6463/aa7bc5

    Article  ADS  Google Scholar 

  10. J. Dixon, A. Rajan, S. Bohlemann et al., Evaluation of a silicon 90Sr betavoltaic power source. Sci. Rep. 6, 38182 (2016). https://doi.org/10.1038/srep38182

    Article  ADS  Google Scholar 

  11. W. Sun, N.P. Kherani, K.D. Hirschman et al., A three-dimensional porous silicon p-n diode for betavoltaics and photovoltaics. Adv. Mater. 17, 1230–1233 (2005). https://doi.org/10.1002/adma.200401723

    Article  Google Scholar 

  12. J.W. Murphy, L.F. Voss, C.D. Frye et al., Design considerations for three-dimensional betavoltaics. Aip. Adv. 9, 065208 (2019). https://doi.org/10.1063/1.5097775

    Article  ADS  Google Scholar 

  13. Y. Ma, N. Wang, J. Chen et al., Betavoltaic enhancement using defect-engineered TiO2 nanotube arrays through electrochemical reduction in organic electrolytes. Acs Appl. Mater. Inter. 10, 22174–22181 (2018). https://doi.org/10.1021/acsami.8b05151

    Article  Google Scholar 

  14. C.S. Chen, N. Wang, P. Zhou et al., Electrochemically reduced graphene oxide on well-aligned titanium dioxide nanotube arrays for betavoltaic enhancement. Acs Appl. Mater. Inter. 8, 24638–24644 (2016). https://doi.org/10.1021/acsami.6b08112

    Article  Google Scholar 

  15. Q. Zhang, R.B. Chen, H.S. San et al., Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference. J. Power Sources. 282, 529–533 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.094

    Article  ADS  Google Scholar 

  16. C.S. Chen, J. Chen, Z. Wang et al., Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics. J. Mater. Sci. Technol. 19, 48–57 (2020). https://doi.org/10.1016/j.jmst.2020.03.040

    Article  Google Scholar 

  17. N. Wang, Y. Ma, J. Chen, C.S. Chen et al., Defect-induced betavoltaic enhancement in black titania nanotube arrays. Nanoscale 10, 13028–13036 (2018). https://doi.org/10.1039/c8nr02824a

    Article  Google Scholar 

  18. N. Wang, R.R. Zheng, T.X. Chi et al., Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes. Compos Part B-Eng. 239, 109952 (2022). https://doi.org/10.1016/j.compositesb.2022.109952

    Article  Google Scholar 

  19. R.R. Zheng, Z. Wang, C.Q. Zhang et al., Photocatalytic enhancement using defect-engineered black mesoporous TiO2/CeO2 nanocomposite aerogel. Compos. Part B-Eng. 222, 109037 (2021). https://doi.org/10.1016/j.compositesb.2021.109037

    Article  Google Scholar 

  20. M. Quintana, T. Edvinsson et al., Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime. J. Phys. Chem. C 111(2), 1035–1041 (2007). https://doi.org/10.1021/jp065948f

    Article  Google Scholar 

  21. M. Wang, J. Bai, F.L. Formal et al., Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. J. Phys. Chem. C 116, 3266–3273 (2012). https://doi.org/10.1021/jp209130x

    Article  Google Scholar 

  22. H. Zhang, A.V. Babichev, G. Jacopin et al., Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact. J. Appl. Phys. 114, 7433–7473 (2013). https://doi.org/10.1063/1.4854455

    Article  Google Scholar 

  23. X. Wang, Y. Han, J. Zhang et al., The design of a direct charge nuclear battery with high energy conversion efficiency. Appl. Radiat. Isotopes. 148, 147–151 (2019). https://doi.org/10.1016/j.apradiso.2019.03.040

    Article  Google Scholar 

  24. M. Wu, J. Zhang, Design and simulation of high conversion efficiency betavoltaic battery based on a stacked multilayer structure. AIP Adv. 9, 075124 (2019). https://doi.org/10.1063/1.5094826

    Article  ADS  Google Scholar 

  25. X.Y. Li, J.B. Lu, Y.M. Liu et al., Exploratory study of betavoltaic battery using ZnO as the energy converting material. Nucl. Sci. Tech. 30, 4 (2019). https://doi.org/10.1007/s41365-019-0577-3

    Article  Google Scholar 

  26. Y.J. Yoon, J.S. Lee, I.M. Kang et al., Design and optimization of GaN‐based betavoltaic cell for enhanced output power density. Int. J. Energ. Res. 45(1), 799–806 (2021). https://doi.org/10.1002/er.5909

    Article  Google Scholar 

  27. Z. Song, C. Zhao, F. Liao et al., Perovskite-betavoltaic cells, a novel application of organic-inorganic hybrid halide perovskites. Acs. Appl. Mater. Inter. 11, 32969–32977 (2019). https://doi.org/10.1021/acsami.9b09952

    Article  Google Scholar 

  28. Y.P. Liu, X.B. Tang, Z.H. Xu et al., Influences of planar source thickness on betavoltaics with different semiconductors. J. Radioanal Nucl. Ch. 304, 517–525 (2015). https://doi.org/10.1007/s10967-014-3879-2

    Article  Google Scholar 

  29. X.Y. Li, J.B. Lu, R.Z. Zheng et al., Comparison of time-related electrical properties of PN junctions and Schottky diodes for ZnO-based betavoltaic batteries. Nucl. Sci. Tech. 31, 18 (2020). https://doi.org/10.1007/s41365-020-0723-y

    Article  Google Scholar 

  30. H. Demers, N.P. Demers, A.R. Couture et al., Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning. 33, 135–146 (2011). https://doi.org/10.1002/sca.20262

    Article  Google Scholar 

  31. M. Chen, L.F. Hu, J.X. Xu et al., ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 7, 2449–2453 (2011). https://doi.org/10.1002/smll.201100694

    Article  ADS  Google Scholar 

  32. X.B. Tang, Y.P. Liu, D. Ding et al., Optimization design of GaN betavoltaic microbattery. Sci. China Tech. Sci. 55, 659–664 (2012). https://doi.org/10.1007/s11431-011-4739-8

    Article  Google Scholar 

  33. X.B. Tang, D. Ding, Y.P. Liu et al., Optimization design and analysis of Si-63Ni betavoltaic battery. Sci. China Technol. Sc. 55, 990–996 (2012). https://doi.org/10.1007/s11431-012-4752-6

    Article  Google Scholar 

  34. H. Gao, S.Z. Luo, H.M. Zhang et al., Demonstration, radiation tolerance and design on a betavoltaic micropower. Energy 51, 116–122 (2013). https://doi.org/10.1016/j.energy.2012.12.042

    Article  Google Scholar 

  35. C. Zhao, L. Lei, F. Liao et al., Efficiency prediction of planar betavoltaic batteries basing on precise modeling of semiconductor units. Appl. Phys. Lett. 117, 263901 (2020). https://doi.org/10.1063/5.0033052

    Article  ADS  Google Scholar 

  36. S.H. Yang, Y.J. Lin, H.C. Chang et al., Effects of H2O2 treatment on the optical and structural properties of ZnO nanorods and the electrical properties of conductive polymer/ZnO-nanorod array diodes. Thin Solid Films 545, 476–479 (2013). https://doi.org/10.1016/j.tsf.2013.08.063

    Article  ADS  Google Scholar 

  37. S.K. Cheung, N.W. Cheung, Extraction of schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986). https://doi.org/10.1063/1.97359

    Article  ADS  Google Scholar 

  38. S. Mridha, D. Basak, ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties. Appl. Phys. Lett. 92, 42 (2008). https://doi.org/10.1063/1.2898399

    Article  Google Scholar 

  39. Z. Yuan, Low-temperature growth of well-aligned ZnO nanorod arrays by chemical bath deposition for schottky diode application. J. Electron. Mater. 44, 1187–1191 (2015). https://doi.org/10.1007/s11664-015-3661-4

    Article  ADS  Google Scholar 

  40. Y.L. Tao, M. Fu, A.L. Zhao et al., The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J. Alloy Compd. 489, 99–102 (2010). https://doi.org/10.1016/j.jallcom.2009.09.020

    Article  Google Scholar 

  41. S.V. Kurudirek, K.C. Pradel, C.J. Summers, Low-temperature hydrothermally grown 100 μm vertically well-aligned ultralong and ultradense ZnO nanorod arrays with improved PL property. J. Alloy Compd. 702, 700–709 (2017). https://doi.org/10.1016/j.jallcom.2017.01.273

    Article  Google Scholar 

  42. M. Fang, Z.W. Liu, Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method. Ceram Int. 43, 6955–6962 (2017). https://doi.org/10.1016/j.ceramint.2017.02.119

    Article  Google Scholar 

  43. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zan Ding, Tong-Xin Jiang, Ren-Rong Zheng, and Na Wang. The first draft of the manuscript was written by Zan Ding. Writing—review—and editing of the manuscript were performed by Hai-Sheng San. Project administration and source support were performed by Li-Feng Zhang, Shi-Chao Liu, Xin Li, and Hai-Sheng San. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xin Li or Hai-Sheng San.

Additional information

This study was supported by the National Natural Science Foundation of China (Nos. 12175190 and U2241284), the National Key R&D Program of China (Nos. SQ2022YFB190165), the Natural Science Foundation of Fujian Province, China (No. 2022J02006), and the Special Funds for Central Government Guiding Shenzhen Development in Science and Technology, China (No. 2021Szvup066).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14661 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Jiang, TX., Zheng, RR. et al. Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays. NUCL SCI TECH 33, 144 (2022). https://doi.org/10.1007/s41365-022-01127-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01127-6

Keywords

Navigation